Chapter Vector Algebra

Topic-1: Algebra of Vectors, Linear Dependence & Independence of Vectors, Vector Inequality

[1994]

MCQs with One Correct Answer

- 1. Let P, Q, R and S be the points on the plane with position vectors $-2\hat{i} \hat{j}$, $4\hat{i}$, $3\hat{i} + 3\hat{j}$ and $-3\hat{i} + 2\hat{j}$ respectively. The quadrilateral PQRS must be a [2010]
 - (a) parallelogram, which is neither a rhombus nor a rectangle
 - (b) square
 - (c) rectangle, but not a square
 - (d) rhombus, but not a square
- 2. Let α , β , γ be distinct real numbers. The points with position vectors $\alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$, $\beta \hat{i} + \gamma \hat{j} + \alpha \hat{k}$, $\gamma \hat{i} + \alpha \hat{j} + \beta \hat{k}$
 - (a) are collinear
 - (b) form an equilateral triangle
 - (c) form a scalene triangle
 - (d) form a right angled triangle
- 3. The points with position vectors 60i + 3j, 40i 8j, ai 52j are collinear if [1983 1 Mark]
 - (a) a = -40
- (b) a = 40

- (c) a = 20
- (d) none of these
- 2 Integer Value Answer/Non-Negative Integer
- Consider the set of eight vectors
 V = {aî + bĵ + ck : a, b, c ∈ {-1,1}}. Three non-coplanar vectors can be chosen from V in 2^p ways. Then p is [Adv. 2013]
 - False 5
- 5. The points with position vectors a + b, a b, and a + kb are collinear for all real values of k. [1984 1 Mark]
- (3) 6 MCQs with One or More than One Correct Answer
- 6. If a = i + j + k, $\vec{b} = 4i + 3j + 4k$ and $c = i + \alpha j + \beta k$ are linearly dependent vectors and $|c| = \sqrt{3}$, then [1998 2 Marks]
 - (a) $\alpha = 1$, $\beta = -1$
- (b) $\alpha = 1, \beta = \pm 1$
- (c) $\alpha = -1$, $\beta = \pm 1$
- (d) $\alpha = \pm 1, \beta = 1$

(200

7 Match the Following

7. Match the following:

[Adv. 2015] Column II

Column I

(A) In a triangle ΔXYZ , let a, b, and c be the lengths of the sides opposite to the angles X, Y and Z, respectively. If $2(a^2 - b^2) = c^2$ and

 $\cosh \cos(n\pi\lambda) = 0 \text{ is (are)}$

 $\lambda = \frac{\sin(X - Y)}{\sin Z}$, then possible values of n for which $\cos(n\pi\lambda) = 0$ is (are)
(B) In a triangle ΔXYZ , let a, b and c be the lengths of the sides opposite to the angles X, Y, and Z respectively. If $1 + \cos 2X - 2\cos 2Y$

(q) 2

(p)

- = $2 \sin X \sin Y$, then possible value (s) of $\frac{a}{b}$ is (are)
- (C) In R^2 , let $\sqrt{3}i + \hat{j}$, $\hat{i} + \sqrt{3}\hat{j}$ and $\beta\hat{i} + (1-\beta)\hat{j}$ be the position vectors of X, Y and Z with respect to the origin O, respectively. If the distance of Z from

(r) 3

the bisector of the acute angle of \overline{OX} with \overline{OY} is $\frac{3}{\sqrt{2}}$, then possible

value(s) of $|\beta|$ is (are)

(D) Suppose that $F(\alpha)$ denotes the area of the region bounded by x = 0, x = 2, $y^2 = 4x$ and $y = |\alpha x - 1| + |\alpha x - 2| + \alpha x$, where $\alpha \in \{0, 1\}$.

(s) 5

Then the value(s) of $F(\alpha) + \frac{8}{3}\sqrt{2}$, when $\alpha = 0$ and $\alpha = 1$, is (are)

(t) 6

8. Match the following:

Column II (p) 1

Column I

(A) In R^2 , if the magnitude of the projection vector of the vector $\alpha \hat{i} + \beta \hat{j}$ on $\sqrt{3}\hat{i} + \hat{j}$ is $\sqrt{3}$ and if $\alpha = 2 + \sqrt{3}\beta$, then possible

2.466.0

value of $|\alpha|$ is/are (B) Let a and b be real numbers such that the function

(a) 2

$$f(x) = \begin{cases} -3ax^2 - 2, & x < 1 \\ bx + a^2, & x \ge 1 \end{cases}$$
 if differentiable for all $x \in R$

Then possible value of a is (are) (C) Let $\omega \neq 1$ be a complex cube root of unity.

(r) 3

- If $(3-3\omega+2\omega^2)^{4n+3} + (2+3\omega-3\omega^2)^{4n+3} + (-3+2\omega+3\omega^2)^{4n+3} = 0$, then possible value (s) of n is (are)
- (s) 4
- (D) Let the harmonic mean of two positive real numbers a and b be 4. If q is a positive real number such that a, b, a, b is an arithmetic progression, then the value(s) of a a a is (are)
- (t) 5

(10) Subjective Problems

- Show, by vector methods, that the angular bisectors of a triangle are concurrent and find an expression for the position vector of the point of concurrency in terms of the position vectors of the vertices. [2001 - 5 Marks]
- Prove, by vector methods or otherwise, that the point of intersection of the diagonals of a trapezium lies on the line passing through the mid-points of the parallel sides. (You may assume that the trapezium is not a parallelogram.)

[1998 - 8 Marks]

11. In a triangle ABC, D and E are points on BC and AC respectively, such that BD = 2 DC and AE = 3EC. Let P be the point of intersection of AD and BE. Find BP/PE using vector methods. [1993 - 5 Marks]

12. In a triangle *OAB*, *E* is the midpoint of *BO* and *D* is a point on *AB* such that *AD*: *DB* = 2:1. If *OD* and *AE* intersect at *P*, determine the ratio *OP*: *PD* using vector methods.

[1989 - 4 Marks]

[Adv. 2015]

- 13. Let OA CB be a parallelogram with O at the origin and OC a diagonal. Let D be the midpoint of OA. Using vector methods prove that BD and CO intersect in the same ratio.

 Determine this ratio. [1988 3 Marks]
- 14. A vector \overrightarrow{A} has components A_1, A_2, A_3 in a right-handed rectangular Cartesian coordinate system oxyz. The coordinate system is rotated about the x-axis through an

angle $\frac{\pi}{2}$. Find the components of A in the new coordinate

system, in terms of A_1 , A_2 , A_3 .

1983 - 2 Marks]

Topic-2: Scalar or Dot Product of two Vectors

MCQs with One Correct Answer

- 1. Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} \hat{j} + \hat{k}$ and $\vec{c} = \hat{i} \hat{j} \hat{k}$ be three vectors. A vector \vec{v} in the plane of \vec{a} and \vec{b} , whose projection on \vec{c} is $\frac{1}{\sqrt{3}}$, is given by [2011]
 - (a) $\hat{i} 3\hat{j} + 3\hat{k}$
- (b) $-3\hat{i} 3\hat{j} \hat{k}$
- (c) $3\hat{i} \hat{i} + 3\hat{k}$
- (d) $\hat{i} + 3\hat{i} 3\hat{k}$
- 2. Let two non-collinear unit vectors \hat{a} and \hat{b} form an acute angle. A point P moves so that at any time t the position vector \overrightarrow{OP} (where O is the origin) is given by $\hat{a} \cos t + \hat{b} \sin t$. When P is farthest from origin O, let M be the length of \overrightarrow{OP} and \hat{u} be the unit vector along \overrightarrow{OP} . Then, [2008]
 - (a) $\hat{u} = \frac{\hat{a} + \hat{b}}{|\hat{a} + \hat{b}|}$ and $M = (1 + \hat{a} \cdot \hat{b})^{1/2}$
 - (b) $\hat{u} = \frac{\hat{a} \hat{b}}{|\hat{a} \hat{b}|}$ and $M = (1 + \hat{a} \cdot \hat{b})^{1/2}$
 - (c) $\hat{u} = \frac{\hat{a} + \hat{b}}{|\hat{a} + \hat{b}|}$ and $M = (1 + 2\hat{a} \cdot \hat{b})^{1/2}$
 - (d) $\hat{u} = \frac{\hat{a} \hat{b}}{|\hat{a} \hat{b}|}$ and $M = (1 + 2\hat{a} \cdot \hat{b})^{1/2}$
- 3. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three non-zero, non-coplanar vectors and

$$\overrightarrow{b_1} = \overrightarrow{b} - \frac{\overrightarrow{b} \cdot \overrightarrow{a}}{|\overrightarrow{a}|^2} \overrightarrow{a}, \overrightarrow{b_2} = \overrightarrow{b} + \frac{\overrightarrow{b} \cdot \overrightarrow{a}}{|\overrightarrow{a}|^2} \overrightarrow{a},$$

$$\overrightarrow{c_1} = \overrightarrow{c} - \frac{\overrightarrow{c} \cdot \overrightarrow{a}}{|\overrightarrow{a}|^2} \overrightarrow{a} + \frac{\overrightarrow{b} \cdot \overrightarrow{c}}{|\overrightarrow{c}|^2} \overrightarrow{b_1}, \overrightarrow{c_2} = \overrightarrow{c} - \frac{\overrightarrow{c} \cdot \overrightarrow{a}}{|\overrightarrow{a}|^2} \overrightarrow{a} - \frac{\overrightarrow{b_1} \cdot \overrightarrow{c}}{|\overrightarrow{b_1}|^2} \overrightarrow{b_1},$$

$$\overrightarrow{c_3} = \overrightarrow{c} - \frac{\overrightarrow{c} \cdot \overrightarrow{a}}{|\overrightarrow{c}|^2} \overrightarrow{a} + \frac{\overrightarrow{b} \cdot \overrightarrow{c}}{|\overrightarrow{c}|^2} \overrightarrow{b_1}, \overrightarrow{c_4} = \overrightarrow{c} - \frac{\overrightarrow{c} \cdot \overrightarrow{a}}{|\overrightarrow{c}|^2} \overrightarrow{a} = \frac{\overrightarrow{b} \cdot \overrightarrow{c}}{|\overrightarrow{b}|^2} \overrightarrow{b_1},$$
then the set of orthogonal vectors is [2005S]

- (a) (a, b_1, c_2)
- (b) (a, b_1, c_2)
- (c) (a, b_1, c_1)
- (d) (a, b_2, c_2)
- 4. If \vec{a} and \vec{b} are two unit vectors such that $\vec{a} + 2\vec{b}$ and $5\vec{a} 4\vec{b}$ are perpendicular to each other then the angle between \vec{a} and \vec{b} is [2002S]

(a) 45°

- b) 60°
- (c) $\cos^{-1}\left(\frac{1}{3}\right)$
- (d) $\cos^{-1}\left(\frac{2}{7}\right)$
- 5. If \vec{a} , \vec{b} and \vec{c} are unit vectors, then

$$\left| \vec{a} - \vec{b} \right|^2 + \left| \vec{b} - \vec{c} \right|^2 + \left| \vec{c} - \vec{a} \right|^2$$
 does NOT exceed [2001S]
(a) 4 (b) 9 (c) 8 (d) 6

- 6. Let \vec{u} , \vec{v} and \vec{w} be vectors such that $\vec{u} + \vec{v} + \vec{w} = 0$. If $|\vec{u}| = 3$, $|\vec{v}| = 4$ and $|\vec{w}| = 5$, then $\vec{u}.\vec{v} + \vec{v}.\vec{w} + \vec{w}.\vec{u}$ is
 - (a) 47 (b) -25 (c) 0 (d) 25
- 7. Let \overline{p} and \overline{q} be the position vectors of P and Q respectively, with respect to O and $|\overline{p}| = p$, $|\overline{q}| = q$.

 The points R and S divide PQ internally and externally in the ratio 2:3 respectively. If OR and OS are perpendicular then

 [1994]

 (a) $9q^2 = 4q^2$ (b) $4p^2 = 9q^2$ (c) 9p = 4q (d) 4p = 9q

2 Integer Value Answer/Non-Negative Integer

- 8. Let $\vec{p} = 2\hat{i} + \hat{j} + 3\hat{k}$ and $\vec{q} = \hat{i} \hat{j} + \hat{k}$. If for some real numbers α , β and γ , we have $15\hat{i} + 10\hat{j} + 6\hat{k} = \alpha(2\vec{p} + \vec{q}) + \beta(\vec{p} 2\vec{q}) + \gamma(\vec{p} \times \vec{q}),$ then the value of γ is . [Adv. 2024]
- 9. If \vec{a} , \vec{b} and \vec{c} are unit vectors satisfying [2012] $|\vec{a} \vec{b}|^2 + |\vec{b} \vec{c}|^2 + |\vec{c} \vec{a}|^2 = 9$, then $|2\vec{a} + 5\vec{b} + 5\vec{c}|$ is

Fill in the Blanks

- 10. The components of a vector \vec{a} along and perpendicular to a non-zero vector \vec{b} are......andrespectively.

 [1988 2 Marks]
- 11. Let $b = 4\hat{i} + 3\hat{j}$ and \vec{c} be two vectors perpendicular to each other in the xy-plane. All vectors in the same plane having projections 1 and 2 along \vec{b} and \vec{c} , respectively, are given by [1987 2 Marks]
- 12. A, B, C and D, are four points in a plane with position vectors a, b, c and d respectively such that $(\vec{a} \vec{d})(\vec{b} \vec{c}) = (\vec{b} \vec{d})(\vec{c} \vec{d}) = 0$ [1984 2 Marks]
 - $(\vec{a} \vec{d})(\vec{b} \vec{c}) = (\vec{b} \vec{d})(\vec{c} \vec{a}) = 0$ [1984 2 Marks] The point *D*, then, is the of the triangle *ABC*.

13. Let \overrightarrow{A} , \overrightarrow{B} , \overrightarrow{C} be vectors of length 3, 4, 5 respectively. Let \overrightarrow{A} be perpendicular to $\vec{B} + \vec{C}$, \vec{B} to $\vec{C} + \vec{A}$ and \vec{C} to $\vec{A} + \vec{B}$. Then the length of vector $\vec{A} + \vec{B} + \vec{C}$ is [1981 - 2 Marks]

6 MCQs with One or More than One Correct Answer

- 14. The vector $\frac{1}{3}(2\hat{i} 2\hat{j} + \hat{k})$ is

 - (b) makes an angle $\frac{\pi}{3}$ with the vector $(2\hat{i} 4\hat{j} + 3\hat{k})$

- (c) parallel to the vector $\left(-\hat{i} + \hat{j} \frac{1}{2}\hat{k}\right)$
- (d) perpendicular to the vector $3\hat{i} + 2\hat{j} 2\hat{k}$
- 15. Let $\vec{a} = 2\hat{i} \hat{j} + \hat{k}, \vec{b} = \hat{i} + 2\hat{j} \hat{k}$ and $\vec{c} = \hat{i} + \hat{j} 2\hat{k}$ be three vectors. A vector in the plane of \vec{b} and \vec{c} , whose projection on \vec{a} is of magnitude $\sqrt{2/3}$, is:

[1993 - 2 Marks]

[2011]

- (b) $2\hat{i} + 3\hat{j} + 3\hat{k}$
- (c) $-2\hat{i} \hat{i} + 5\hat{k}$
- (d) $2\hat{i} + \hat{j} + 5\hat{k}$

Match the Following

Match the statements given in Column-II with the values given in Column-II.

Column-II

- (A) If $\vec{a} = \hat{i} + \sqrt{3}\hat{k}$, $\vec{b} = -\hat{i} + \sqrt{3}\hat{k}$ and $\vec{c} = 2\sqrt{3}\hat{k}$ form a triangle, then the internal angle of the triangle between \vec{a} and \vec{b} is
- (B) If $\int (f(x) 3x) dx = a^2 b^2$, then the value of $f\left(\frac{\pi}{6}\right)$ is

(C) The value of $\frac{\pi^2}{\ell n 3} \int_{7/6}^{5/6} \sec(\pi x) dx$ is

- (D) The maximum value of $\left| Arg \left(\frac{1}{1-z} \right) \right|$ for $|z|=1, z \neq 1$ is given by

10 Subjective Problems

If the incident ray on a surface is along the unit vector \hat{v} , the reflected ray is along the unit vector \hat{w} and the normal is along unit vector \hat{a} outwards. Express \hat{w} in terms of \hat{a} and \hat{v} .

- Find 3-dimensional vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3$ satisfying $\vec{v}_1 \cdot \vec{v}_1 = 4, \vec{v}_1 \cdot \vec{v}_2 = -2, \vec{v}_1 \cdot \vec{v}_3 = 6, \vec{v}_2 \cdot \vec{v}_2$ $= 2, \vec{v}_2 \cdot \vec{v}_3 = -5, \vec{v}_3 \cdot \vec{v}_3 = 29$ [2001 - 5 Marks]

- 18. Let $\vec{A}(t) = f_1(t)\hat{i} + f_2(t)\hat{j}$ and $\vec{B}(t) = g_1(t)\hat{i} + g_2(t)\hat{j}, t \in [0, 1],$
 - where f_1, f_2, g_1, g_2 are continuous functions. If $\vec{A}(t)$ and $\vec{B}(t)$ are nonzero vectors for all t and $\vec{A}(0) = 2\hat{i} + 3\hat{j}$, $\vec{A}(1)$
- 20. Determine the value of 'c' so that for all real x, the vector $cx\hat{i} - 6\hat{j} - 3\hat{k}$ and $x\hat{i} + 2\hat{j} + 2cx\hat{k}$ make an obtuse angle with each other. [1991 - 4 Marks]
- From a point O inside a triangle ABC, perpendiculars OD, OE, OF are drawn to the sides BC, CA, AB respectively. Prove that the perpendiculars from A, B, C to the sides EF, FD, DE are concurrent.

Topic-3: Vector or Cross Product of two vectors, Scalar & Vector Triple Product

MCQs with One Correct Answer

- Let the position vectors of the points P, Q, R and S be $\vec{a} = \hat{i} + 2\hat{j} - 5\hat{k}, \vec{b} = 3\hat{i} + 6\hat{j} + 3\hat{k}, \vec{c} = \frac{17}{5}\hat{i} + \frac{16}{5}\hat{j} + 7\hat{k}$ and $\vec{d} = 2\hat{i} + \hat{j} + \hat{k}$, respectively. Then which of the following statements is true?
 - (a) The points P,Q,R and S are NOT coplanar.
 - (b) $\frac{\vec{b}+2\vec{d}}{3}$ is the position vector of a point which divides PR internally in the ratio 5:4.
 - (c) $\frac{\ddot{b}+2\dot{d}}{3}$ is the position vector of a point which divides PR externally in the ratio 5:4.
 - (d) The square of the magnitude of the vector $\mathbf{b} \times \mathbf{d}$ is
- If \vec{a} and \vec{b} are vectors such that $|\vec{a} + \vec{b}| = \sqrt{29}$ and $\vec{a} \times (2\hat{i} + 3\hat{j} + 4\hat{k}) = (2\hat{i} + 3\hat{j} + 4\hat{k}) \times \vec{b}$, then a possible [2012] value of $(\vec{a} + \vec{b}) \cdot (-7\hat{i} + 2\hat{j} + 3\hat{k})$ is
- (c) 4 Two adjacent sides of a parallelogram ABCD are given by $\overrightarrow{AB} = 2\hat{i} + 10\hat{j} + 11\hat{k}$ and $\overrightarrow{AD} = -\hat{i} + 2\hat{j} + 2\hat{k}$

The side AD is rotated by an acute angle α in the plane of the parallelogram so that AD becomes AD'. If AD' makes a right angle with the side AB, then the cosine of the angle α

- (a) $\frac{8}{9}$ (b) $\frac{\sqrt{17}}{9}$ (c) $\frac{1}{9}$ (d) $\frac{4\sqrt{5}}{9}$
- If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are unit vectors such that

$$(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = 1$$
 and $\vec{a} \cdot \vec{c} = \frac{1}{2}$, then [2009]

- (a) $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar
- (b) $\vec{b}, \vec{c}, \vec{d}$ are non-coplanar
- (c) $\vec{b} \cdot \vec{d}$ are non-parallel
- (d) \vec{a}, \vec{d} are parallel and \vec{b}, \vec{c} are parallel
- 5. The edges of a parallelpiped are of unit length and are parallel to non-coplanar unit vectors $\hat{a}, \hat{b}, \hat{c}$ such that

 $\hat{a} \cdot \hat{b} = \hat{b} \cdot \hat{c} = \hat{c} \cdot \hat{a} = \frac{1}{2}$. Then, the volume of the parallel piped

- (a) $\frac{1}{\sqrt{2}}$ (b) $\frac{1}{2\sqrt{2}}$ (c) $\frac{\sqrt{3}}{2}$ (d) $\frac{1}{\sqrt{3}}$

- Let \vec{a}, b, \vec{c} be unit vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. Which one of the following is correct? [2007 -3 marks]

 - $\vec{a} \times \vec{b} = b \times \vec{c} = \vec{c} \times \vec{a} \neq \vec{0}$
 - (c) $\vec{a} \times \vec{b} = b \times \vec{c} = \vec{a} \times \vec{c} \neq \vec{0}$
 - (d) $\vec{a} \times \vec{b}, b \times \vec{c}, \vec{c} \times \vec{a}$ are muturally perpendicular
- The number of distinct real values of λ, for which the vectors $-\lambda^2 \hat{i} + \hat{j} + \hat{k}$, $\hat{i} - \lambda^2 \hat{j} + \hat{k}$ and $\hat{i} + \hat{j} - \lambda^2 \hat{k}$ are coplanar, is
 - (a) zero (b) one (c) two (d) three
- Let $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$, $\vec{b} = \hat{i} \hat{j} + \hat{k}$ and $\vec{c} = \hat{i} + \hat{j} \hat{k}$. A vector in the plane of \vec{a} and \vec{b} whose projection on \vec{c} is $\frac{1}{\sqrt{3}}$, is [2006 - 3M, -1]
 - (a) $4\hat{i} \hat{j} + 4\hat{k}$
 - (b) $3\hat{i} + \hat{i} 3\hat{k}$
 - (c) $2\hat{i} + \hat{j} 2\hat{k}$
- (d) $4\hat{i} + \hat{j} 4\hat{k}$
- The unit vector which is orthogonal to the vector $5\hat{i} + 2\hat{j} + 6\hat{k}$ and is coplanar with the vectors $2\hat{i} + \hat{j} + \hat{k}$ and $\hat{i} - \hat{i} + \hat{k}$ is
 - (a) $\frac{2\hat{i} 6\hat{j} + \hat{k}}{\sqrt{41}}$ (b) $\frac{2\hat{i} 3\hat{j}}{\sqrt{13}}$
 - (c) $\frac{3\hat{j} \hat{k}}{\sqrt{10}}$ (d) $\frac{4\hat{i} + 3\hat{j} 3\hat{k}}{\sqrt{34}}$
- If $\vec{a} = (\hat{i} + \hat{j} + \hat{k})$, $\vec{a} \cdot \vec{b} = 1$ and $\vec{a} \times \vec{b} = \hat{j} \hat{k}$, then \vec{b} is
 - (a) $\hat{i} \hat{j} + \hat{k}$
- (b) $2\hat{j} \hat{k}$ [2004S]

- 11. The value of 'a' so that the volume of parallelopiped formed by $\hat{i} + a\hat{j} + \hat{k}$, $\hat{j} + a\hat{k}$ and $a\hat{i} + \hat{k}$ becomes minimum is [20038]
 - (a) -3 (b) 3
- (c) $1/\sqrt{3}$
 - (d) $\sqrt{3}$
- 12. Let $\vec{V} = 2\vec{i} + \vec{j} \vec{k}$ and $\vec{W} = \vec{i} + 3\vec{k}$. If \vec{U} is a unit vector, then the maximum value of the scalar triple product $|\overrightarrow{UVW}|$ is
- (b) $\sqrt{10} + \sqrt{6}$
- 13. Let $\vec{a} = \vec{i} \vec{k}$, $\vec{b} = x\vec{i} + \vec{j} + (1 x)\vec{k}$ and $\vec{c} = y\vec{i} + x\vec{j} + (1 + x - y)\vec{k}$. Then $|\vec{a}|\vec{b}|\vec{c}$ depends on
- (b) only v
- (c) Neither x Nor y (d) both x and y

- If \vec{a} , \vec{b} and \vec{c} are unit coplanar vectors, then the scalar triple product $\begin{bmatrix} 2 \stackrel{\rightarrow}{a} - \stackrel{\rightarrow}{b}, 2 \stackrel{\rightarrow}{b} - \stackrel{\rightarrow}{c}, 2 \stackrel{\rightarrow}{c} - \stackrel{\rightarrow}{a} \end{bmatrix} =$
- (b) 1 (c) $-\sqrt{3}$ (d) $\sqrt{3}$
- 15. Let the vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} and \overrightarrow{d} be such that $\overrightarrow{a} \times \overrightarrow{b} \times \overrightarrow{c} \times \overrightarrow{d} = 0$. Let P_1 and P_2 be planes

determined by the pairs of vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} , \overrightarrow{d} respectively. Then the angle between P_1 and P_2 is

- (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$
- 16. If the vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} form the sides BC, CA and AB respectively of a triangle ABC, then [2000S]
 - (a) $\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a} = 0$
 - (b) $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a}$
 - (c) \overrightarrow{a} \overrightarrow{b} \overrightarrow{b} \overrightarrow{b} \overrightarrow{c} \overrightarrow{c} \overrightarrow{c} \overrightarrow{c}
 - (d) $\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} = 0$
- 17. Let a=2i+j+k, b=i+2j-k and a unit vector c be coplanar. If c is perpendicular to a, then c = [1999 - 2 Marks]

 - (a) $\frac{1}{\sqrt{2}}(-j+k)$ (b) $\frac{1}{\sqrt{3}}(-i-j-k)$

 - (c) $\frac{1}{\sqrt{5}}(i-2j)$ (d) $\frac{1}{\sqrt{3}}(i-j-k)$
- 18. Let a = 2i + j 2k and b = i + j. If c is a vector such that $a \cdot c = |c|, |c - a| = 2\sqrt{2}$ and the angle between $(a \times b)$ and c is 30°, then $|(a \times b) \times c| =$ [1999 - 2 Marks] (b) 3/2 (a) 2/3
- 19. If \vec{a} , \vec{b} and \vec{c} are three non coplanar vectors, then [1995S] $(\vec{a} + \vec{b} + \vec{c})$. $[(\vec{a} + \vec{b}) \times (\vec{a} + \vec{c})]$ equals

- (b) [a b c]
- (c) $2 \begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}$
- (d) $[\vec{a} \ \vec{b} \ \vec{c}]$
- 20. If $\vec{a}, \vec{b}, \vec{c}$ are non coplanar unit vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{(b + \vec{c})}{\sqrt{2}}$, then the angle between \vec{a} and \vec{b}
 - (a) $\frac{3\pi}{4}$ (b) $\frac{\pi}{4}$ (c) $\pi/2$
- 21. Let $\vec{a} = \hat{i} \hat{j}$, $\vec{b} = \hat{j} \hat{k}$, $\vec{c} = \hat{k} \hat{i}$. If \vec{d} is a unit vector such that $\vec{a} \cdot \vec{d} = 0 = [\vec{b} \ \vec{c} \ \vec{d}]$, then \vec{d} equals [1995S]

- (a) $\pm \frac{\hat{i} + \hat{j} 2\hat{k}}{\sqrt{2}}$ (b) $\pm \frac{\hat{i} + \hat{j} \hat{k}}{\sqrt{2}}$
- - (c) $\pm \frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{2}}$
- 22. Let a, b, c be distinct non-negative numbers. If the vectors $a\hat{i} + a\hat{j} + c\hat{k}, \hat{i} + \hat{k}$ and $c\hat{i} + c\hat{j} + b\hat{k}$ lie in a plane, then c is
 - (a) the Arithmetic Mean of a and b [1993 - 1 Marks]
 - (b) the Geometric Mean of a and b
 - the harmonic Mean of a and b
 - (d) equal to zero
- 23. Let \overline{a} , \overline{b} , \overline{c} , be three non-coplanar vectors and \overline{p} , \overline{q} , r, are

vectors defined by the relations $\vec{p} = \frac{\vec{b} \times \vec{c}}{[\vec{a} \, \vec{b} \, \vec{c}]}, \vec{q} = \frac{\vec{c} \times \vec{a}}{[\vec{a} \, \vec{b} \, \vec{c}]}$

 $\vec{r} = \frac{\vec{a} \times \vec{b}}{\vec{a} \vec{b} \vec{c}}$ then the value of the expression

 $(\vec{a} + \vec{b}) \cdot \vec{p} + (\vec{b} + \vec{c}) \cdot \vec{q} + (\vec{c} + \vec{a}), \vec{r}$ is equal to [1988 - 2 Marks]

- (a) 0 (b) 1 (c) 2 24. The volume of the parallelopiped whose sides are given by $\overrightarrow{OA} = 2i - 2j$, $\overrightarrow{OB} = i + j - k$, $\overrightarrow{OC} = 3i - k$, is [1983 - 1 Mark]

- (d) none of these
- 25. For non-zero vectors $\vec{a}, \vec{b}, \vec{c}$, $|(\vec{a} \times \vec{b}) \cdot \vec{c}| = |\vec{a}| |\vec{b}| |\vec{c}|$ [1982 - 2 Marks] holds if and only if
 - (a) $\vec{a} \cdot \vec{b} = 0$, $\vec{b} \cdot \vec{c} = 0$
- (b) $\vec{b} \cdot \vec{c} = 0$, $\vec{c} \cdot \vec{a} = 0$
- (c) $\vec{c} \cdot \vec{a} = 0$ $\vec{a} \cdot \vec{b} = 0$ (d) $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$
- 26. The scalar $\overrightarrow{A} \cdot (\overrightarrow{B} + \overrightarrow{C}) \times (\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C})$ equals:

[1981 - 2 Marks]

- (a) 0
- (b) $[\overrightarrow{A} \overrightarrow{B} \overrightarrow{C}] + [\overrightarrow{B} \overrightarrow{C} \overrightarrow{A}]$
- (c) $[\overrightarrow{A}\overrightarrow{B}\overrightarrow{C}]$
- (d) None of these
- Integer Value Answer/Non-Negative Integer
- Let \vec{u}, \vec{v} and \vec{w} be vectors in three-dimensional space, where \vec{u} and \vec{v} are unit vectors which are not perpendicular to each other and $\vec{u}.\vec{w} = 1$, $\vec{v}.\vec{w} = 1$, $\vec{w}.\vec{w} = 4$ If the volume of the parallelopipede, whose adjacent sides are represented by the vectors \vec{u} , \vec{v} and \vec{w} , is $\sqrt{2}$, then the value of $|3\vec{u} + 5\vec{v}|$ is .
- Let \vec{a} and \vec{b} be two unit vectors such that $\vec{a} \cdot \vec{b} = 0$. For

some $x, y \in \mathbb{R}$, let $\vec{c} = x\vec{a} + y\vec{b} + (\vec{a} \times \vec{b})$. If $|\vec{c}| = 2$ and the vector \vec{c} is inclined at the same angle α to both \vec{a} and \vec{b} , then the value of $8\cos^2\alpha$ is _____. [Adv. 2018]

- 29. Suppose that \vec{p}, \vec{q} and \vec{r} are three non-coplanar vectors in \mathbb{R}^3 . Let the components of a vector \vec{s} along \vec{p}, \vec{q} and \vec{r} be 4, 3 and 5, respectively. If the components of this vector \vec{s} along $(-\vec{p} + \vec{q} + \vec{r}), (\vec{p} \vec{q} + \vec{r})$ and $(-\vec{p} \vec{q} + \vec{r})$ are x, y and z, respectively, then the value of 2x + y + z is [Adv. 2015]
- 30. Let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be three non-coplanar unit vectors such that the angle between every pair of them is $\frac{\pi}{3}$. If $\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} = p\overrightarrow{a} + q\overrightarrow{b} + r\overrightarrow{c}$, where p, q and r are scalars, then the value of $\frac{p^2 + 2q^2 + r^2}{q^2}$ is [Adv. 2014]
- 31. Let $\vec{a} = -\vec{i} \hat{k}$, $\vec{b} = -\hat{i} + \hat{j}$ and $\vec{c} = \hat{i} + 2\hat{j} + 3\hat{k}$ be three given vectors. If \vec{r} is a vector such that $\vec{r} \times \vec{b} = \vec{c} \times \vec{b}$ and $\vec{r} \cdot \vec{a} = 0$, then the value of $\vec{r} \cdot \vec{b}$ is [2011]
- 32. If \vec{a} and \vec{b} are vectors in space given by $\vec{a} = \frac{\hat{i} 2\hat{j}}{\sqrt{5}}$ and $\vec{b} = \frac{2\hat{i} + \hat{j} + 3\hat{k}}{\sqrt{14}}$, then find the value of $(2\vec{a} + \vec{b})$.

 $\left[\left(\vec{a} \times \vec{b} \right) \times \left(\vec{a} - 2\vec{b} \right) \right].$ [2010]

3 Numeric/New Stem Based Questions

33. Let $\vec{a} = 2\hat{i} + \hat{j} - \hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} + \hat{k}$ be two vectors. Consider a vector $\vec{c} = \alpha \hat{a} + \beta \hat{b}$, $\alpha, \beta \in R$. If the projection of \vec{c} on the vector $(\vec{a} + \vec{b})$ is $3\sqrt{2}$, then the minimum value of $(\vec{c} - (\vec{a} \times \vec{b}))\vec{c}$ equals _____. [Adv. 2019]

Fill in the Blanks

- 34. Let OA = a, OB = 10 a + 2b and OC = b where O, A and C are non-collinear points. Let p denote the area of the quadrilateral OABC, and let q denote the area of the parallelogram with OA and OC as adjacent sides. If p = kq, then k = [1997 2 Marks]
- 35. If \vec{b} and \vec{c} are any two non-collinear unit vectors and \vec{a} is any vector, then $(\vec{a}.\vec{b})\vec{b} + (\vec{a}.\vec{c})\vec{c} + \frac{\vec{a}.(\vec{b}\times\vec{c})}{|\vec{b}\times\vec{c}|}(\vec{b}\times\vec{c}) = \dots$ [1996 2 Marks]

- 36. A unit vector coplanar with $\vec{i} + \vec{j} + 2\vec{k}$ and $\vec{i} + 2\vec{j} + \vec{k}$ and perpendicular to $\vec{i} + \vec{j} + \vec{k}$ is [1992 2 Marks]
- 37. If the vectors $a\hat{i} + \hat{j} + \hat{k}$, $\hat{i} + b\hat{j} + \hat{k}$ and $\hat{i} + \hat{j} + c\hat{k}$ $(a \neq b \neq c \neq 1) \text{ are coplanar, then the value of } \frac{1}{(1-a)} + \frac{1}{(1-b)} + \frac{1}{(1-c)} = \dots$ [1987 2 Marks]
- 38. If $\overline{A} = (1, 1, 1)$, $\overline{C} = (0, 1, -1)$ are given vectors, then a vector B satisfying the equations $\overline{A} \times \overline{B} = \overline{C}$ and $\overline{A} \cdot \overline{B} = 3$ [1985 2 Marks]
- 39. If $\overline{A} \ \overline{B} \ \overline{C}$ are three non-coplanar vectors, then $\frac{\overline{A} \cdot \overline{B} \times \overline{C}}{\overline{C} \times \overline{A} \cdot \overline{B}} + \frac{\overline{B} \cdot \overline{A} \times \overline{C}}{\overline{C} \cdot \overline{A} \times \overline{B}} = \dots$ [1985 2 Marks]
- 40. If $\begin{vmatrix} a & a^2 & 1+a^3 \\ b & b^2 & 1+b^3 \\ c & c^2 & 1+c^3 \end{vmatrix} = 0$ and the vectors $\overline{A} = (1, a, a^2)$,

 $\overrightarrow{B} = (1, b, b^2), \ \overrightarrow{C} = (1, c, c^2), \text{ are non-coplanar, then the product } abc = \dots$ [1985 - 2 Marks]

41. The area of the triangle whose vertices are A(1, -1, 2), B(2, 1, -1), C(3, -1, 2) is [1983 - 1 Mark]

5 True / False

42. For any three vectors \overrightarrow{a} , \overrightarrow{b} , and \overrightarrow{c} , $(\overrightarrow{a} - \overrightarrow{b}) \cdot (\overrightarrow{b} - \overrightarrow{c}) \times (\overrightarrow{c} - \overrightarrow{a}) = 2\overrightarrow{a} \cdot \overrightarrow{b} \times \overrightarrow{c}.$

43. If X.A = 0, X.B = 0, X.C = 0 for some non-zero vector X, then [A B C] = 0 [1983 - 1 Mark]

44. Let \vec{A} , \vec{B} and \vec{C} be unit vectors suppose that \vec{A} . $\vec{B} = \vec{A}$. $\vec{C} = 0$, and that the angle between \vec{B} and \vec{C} is $\pi/6$. Then $\vec{A} = \pm 2$ ($\vec{B} \times \vec{C}$). [1981 - 2 Marks]

6 MCQs with One or More than One Correct Answer

45. Let \hat{i} , \hat{j} and \hat{k} be the unit vectors along the three positive coordinate axes. Let [Adv. 2022] $\vec{a} = 3\hat{i} + \hat{j} - \hat{k},$ $\vec{b} = \hat{i} + b_2 \hat{j} + b_3 \hat{k}, \quad b_2, b_3 \in \mathbb{R}$ $\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}, \quad c_1, c_2, c_3 \in \mathbb{R}$ be three vectors such that $b_2 b_3 > 0$, $\vec{a} \cdot \vec{b} = 0$ and

$$\begin{pmatrix} 0 & -c_3 & c_2 \\ c_3 & 0 & -c_1 \\ -c_2 & c_1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 3-c_1 \\ 1-c_2 \\ -1-c_3 \end{pmatrix}$$

Then, which of the following is/are TRUE?

- (a) $\vec{a} \cdot \vec{c} = 0$
- (c) $|\vec{b}| > \sqrt{10}$
- $|\vec{c}| \leq \sqrt{11}$
- Let O be the origin and

$$\overrightarrow{OA} = 2\hat{i} + 2\hat{j} + \hat{k}, \ \overrightarrow{OB} = \hat{i} - 2\hat{j} + 2\hat{k} \text{ and}$$

$$\overrightarrow{OC} = \frac{1}{2}(\overrightarrow{OB} - \lambda \overrightarrow{OA})$$
 for some $\lambda > 0$. If

 $\left| \overrightarrow{OB} \times \overrightarrow{OA} \right| = \frac{9}{2}$, then which of the following statements is (are) TRUE?

- (a) Projection of \overrightarrow{OC} on \overrightarrow{OA} is $-\frac{3}{2}$
- Area of the triangle *OAB* is $\frac{9}{3}$
- Area of the triangle ABC is $\frac{9}{2}$
- The acute angle between the diagonals of the parallelogram with adjacent sides \overline{OA} and \overline{OC} is $\frac{\pi}{2}$
- Let a and b be positive real numbers. Suppose $\overrightarrow{PQ} = a\hat{i} + b\hat{j}$ and $\overrightarrow{PS} = a\hat{i} - b\hat{j}$ are adjacent sides of a parallelogram PQRS. Let \vec{u} and \vec{v} be the projection vectors of $\vec{w} = \hat{i} + \hat{j}$ along \overrightarrow{PQ} and \overrightarrow{PS} , respectively. If $|\vec{u}| + |\vec{v}| = |\vec{w}|$ and if the area of the parallelogram PORS is 8, then which of the following statements is/are TRUE?
 - [Adv. 2020] (a) a + b = 4
 - (b) a b = 2
 - (c) The length of the diagonal PR of the parallelogram PQRS is 4
 - (d) \vec{w} is an angle bisector of the vectors \vec{PQ} and \vec{PS}
- 48. Let $\triangle PQR$ be a triangle. Let $\vec{a} = \overrightarrow{QR}$, $\vec{b} = \overrightarrow{RP}$ and $\vec{c} = \overrightarrow{PQ}$. If $|\vec{a}| = 12$, $|\vec{b}| = 4\sqrt{3}$, $\vec{b} \cdot \vec{c} = 24$, then which of the following is (are) true?
 - (a) $\frac{|\vec{c}|^2}{2} |\vec{a}| = 12$ (b) $\frac{|\vec{c}|^2}{2} + |\vec{a}| = 30$
 - (c) $|\vec{a} \times \vec{b} + \vec{c} \times \vec{a}| = 48\sqrt{3}$ (d) $\vec{a} \cdot \vec{b} = -72$
- 49. Let x, y and z be three vectors each of magnitude $\sqrt{2}$ and the angle between each pair of them is $\frac{\pi}{3}$. If a is

a non-zero vector perpendicular to x and $y \times z$ and bis a non-zero vector perpendicular to y and $z \times x$, then

- (c) $\overrightarrow{a} \cdot \overrightarrow{b} = \begin{vmatrix} \overrightarrow{a} \cdot \overrightarrow{y} \\ \overrightarrow{b} \cdot \overrightarrow{z} \end{vmatrix}$
- (d) $\overrightarrow{a} = -\begin{pmatrix} \overrightarrow{a} \cdot \overrightarrow{y} & \overrightarrow{z} \overrightarrow{y} \\ \overrightarrow{z} \overrightarrow{y} \end{pmatrix}$
- The vector (s) which is/are coplanar with vectors $\hat{i} + \hat{j} + 2\hat{k}$ and $\hat{i} + 2\hat{j} + \hat{k}$, and perpendicular to the vector $\hat{i} + \hat{j} + \hat{k}$ is/are
- (c) $\hat{i} \hat{j}$
- (d) $-\hat{j} + \hat{k}$
- 51. Let a and b be two non-collinear unit vectors. If $u = a (a \cdot b)$ [1999 - 3 Marks] b and $v = a \times b$, then |v| is
 - |u|
- (d) |u| + u.(a+b)
- |u|+|u.b|Which of the following expressions are meaningful? 52. [1998 - 2 Marks]
 - (a) $u(v \times w)$
- (b) (u v) w
- (d) $u \times (v \cdot w)$ (c) (u • v) w
- 53. For three vectors u, v, w which of the following expression is not equal to any of the remaining three? [1998 - 2 Marks] (a) $u \cdot (v \times w)$
- (b) $(v \times w) \cdot u$
- (c) $v \cdot (u \times w)$
- (d) $(u \times v) \cdot w$
- 54. The number of vectors of unit length perpendicular to vectors $\vec{a} = (1, 1, 0)$ and $\vec{b} = (0, 1, 1)$ is [1987 - 2 Marks]
 - (a) one

- (b) two (d) infinite
- $\vec{a} = a_1 i + a_2 j + a_3 k$, $\vec{b} = b_1 i + b_2 j + b_3 k$ $c = c_1 i + c_2 j + c_3 k$ be three non-zero vectors such that c is a unit vector perpendicular to both the vectors a

and \vec{b} . If the angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$, then

- b3 is equal to

- (c) $\frac{1}{4}(a_1^2 + a_2^2 + a_2^3)(b_1^2 + b_2^2 + b_3^2)$
- (d) $\frac{3}{4}(a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2)(c_1^2 + c_2^2 + c_3^2)$

Match the Following

56. Match List I with List II and select the correct answer using the code given below the lists:

List-I

[Adv. 2014]

P. Let $y(x) = \cos(3\cos^{-1}x)$, $x \in [-1,1]$, $x \neq \pm \frac{\sqrt{3}}{2}$. Then

1 1

$$\frac{1}{y(x)} \left\{ \left(x^2 - 1\right) \frac{d^2 y(x)}{dx^2} + x \frac{dy(x)}{dx} \right\} \text{ equals}$$

Q. Let $A_1, A_2, ..., A_n$ (n > 2) be the vertices of a regular

, ,

polygon of n sides with its centre at the origin. Let $\overrightarrow{a_k}$ be the position vector of the point A_k , $k = 1, 2, \dots, n$.

If
$$\left|\sum_{k=1}^{n-1} \begin{pmatrix} \rightarrow & \rightarrow \\ a_k \times a_{k+1} \end{pmatrix} \right| = \left|\sum_{k=1}^{n-1} \begin{pmatrix} \rightarrow & \rightarrow \\ a_k \cdot a_{k+1} \end{pmatrix} \right|$$

then the minimum value of n is

R. If the normal from the point P(h, 1) on the ellipse

3 8

 $\frac{x^2}{6} + \frac{y^2}{3} = 1$ is perpendicular to the line x + y = 8, then the value of h is

S. Number of positive solutions satisfying the

4

equation
$$\tan^{-1} \left(\frac{1}{2x+1} \right) + \tan^{-1} \left(\frac{1}{4x+1} \right) = \tan^{-1} \left(\frac{2}{x^2} \right)$$
 is

- P Q R S
- (b) 2 4 3
- (c) 4 3 1 2
- (d) 2 4 1 3
- 57. Match List I with List II and select the correct answer using the code given below the lists:
 List I

[Adv. 2013

- P. Volume of parallelepiped determined by vectors \vec{a}, \vec{b} and \vec{c} is 2. Then the volume of the parallelepiped determined by vectors $2(\vec{a} \times \vec{b}), 3(\vec{b} \times \vec{c})$ and $2(\vec{c} \times \vec{a})$ is
- $2(\vec{a} \times b)$, $3(b \times \vec{c})$ and $2(\vec{c} \times \vec{a})$ is Q. Volume of parallelepiped determined by vectors \vec{a}, \vec{b} and \vec{c} is 5. Then the volume of the parallelepiped determined by vectors

2 3

 $3(\vec{a}+\vec{b}), 3(\vec{b}+\vec{c})$ and $2(\vec{c}+\vec{a})$ is R. Area of a triangle with adjacent sides determined by vectors \vec{a} and \vec{b} is 20. Then the area of the triangle with adjacent sides determined

2 24

- by vectors $(2\vec{a}+3\vec{b})$ and $(\vec{a}-\vec{b})$ is
- Area of a parallelogram with adjacent sides determined by vectors \vec{a} and \vec{b} is 30. Then the area of the parallelogram with adjacent

4. 60

sides determined by vectors $(\vec{a} + \vec{b})$ and \vec{a} is

Codes:

- P Q R S
 (a) 4 2 3 1
 (b) 2 3 1 4
 (c) 3 4 1 2
 (d) 1 4 3 2
- (d) 1 4 3 2

 58. Match the statements / expressions given in Column-I with the values given in Column-II.

 Column-I

12000

(A) Root(s) of the equation $2 \sin^2 \theta + \sin^2 2\theta = 2$

(p) $\frac{\pi}{6}$

Column-II

- (B) Points of discontinuity of the unction $f(x) = \left[\frac{6x}{\pi}\right] \cos\left[\frac{3x}{\pi}\right]$, f where [y] denotes the largest integer less than or equal to y
- (q) $\frac{1}{2}$

[2002 - 5 Marks]

- (C) Volume of the parallellpiped with its edges represented by the (r) vectors $\hat{i} + \hat{j}$, $\hat{i} + 2\hat{j}$ and $\hat{i} + \hat{j} + \pi \hat{k}$
- (D) Angle between vector \vec{a} and \vec{b} where \vec{a} , \vec{b} and \vec{c} are unit vectors satisfying $\vec{a} + \vec{b} + \sqrt{3} \vec{c} = \vec{0}$

Comprehension/Passage Based Questions

Let O be the origin, and $\overrightarrow{OX}, \overrightarrow{OY}, \overrightarrow{OZ}$ be three unit vectors in the directions of the sides QR, RP, PQ respectively, of a triangle [Adv. 2017] PQR.

- 59. $|\overrightarrow{OX} \times \overrightarrow{OY}| =$
 - (a) $\sin(P+Q)$
- (b) sin 2R
- (c) $\sin(P+R)$
- (d) $\sin(Q+R)$
- 60. If the triangle PQR varies, then the minimum value of cos(P+Q) + cos(Q+R) + cos(R+P) is
 - (a) $-\frac{5}{3}$ (b) $-\frac{3}{2}$ (c) $\frac{3}{2}$ (d) $\frac{5}{3}$

9 Assertion and Reason/Statements Type Questions

61. Let the vectors \overrightarrow{PQ} , \overrightarrow{QR} , \overrightarrow{RS} , \overrightarrow{ST} , \overrightarrow{TU} and \overrightarrow{UP} represent the sides of a regular hexagon.

STATEMENT-1: $\overrightarrow{PQ} \times (\overrightarrow{RS} + \overrightarrow{ST}) \neq \overrightarrow{0}$. because **STATEMENT-2**: $\overrightarrow{PQ} \times \overrightarrow{RS} = \overrightarrow{0}$ and $\overrightarrow{PQ} \times \overrightarrow{ST} \neq \overrightarrow{0}$.

[2007 - 3 marks]

- (a) Statement-1 is True, statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- Statement-1 is True, Statement-2 is False
- Statement-1 is False, Statement-2 is True.

(Subjective Problems

- 62. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are distinct vectors such that $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$ and $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$. Prove that $(\vec{a} - \vec{d}) \cdot (\vec{b} - \vec{c}) \neq 0$ i.e. $\vec{a} \cdot \vec{b} + \vec{d} \cdot \vec{c} \neq \vec{d} \cdot \vec{b} + \vec{a} \cdot \vec{c}$ [2004 - 2 Marks]
- 63. If \vec{u} , \vec{v} , \vec{w} , are three non-coplanar unit vectors and α , β , γ are the angles between \vec{u} and \vec{v} and \vec{w} , \vec{w} and \vec{u} respectively and \vec{x} , \vec{y} , \vec{z} are unit vectors along the bisectors of the angles α , β , γ respectively. Prove that

$$[\vec{x} \times \vec{y} \ \vec{y} \times \vec{z} \ \vec{z} \times \vec{x}] = \frac{1}{16} [\vec{u} \ \vec{v} \ \vec{w}]^2 \sec^2 \frac{\alpha}{2} \sec^2 \frac{\beta}{2} \sec^2 \frac{\gamma}{2}.$$
[2003 - 4 Marks]

- 64. Let V be the volume of the parallelopiped formed by the $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$, $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$, $\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$. If a_r, b_r, c_r , where r = 1, 2, 3, are nonnegative real numbers and $\sum_{r=1}^{\infty} (a_r + b_r + c_r) = 3L$, show
- that $V \leq L^3$. 65. Let u and v be unit vectors. If w is a vector such that $\vec{w} + (\vec{w} \times \vec{u}) = \vec{v}$, then prove that $|(\vec{u} \times \vec{v}) \cdot \vec{w}| \le 1/2$ and that the equality holds if and only if u is perpendicular to v. [1999 - 10 Marks]
- For any two vectors u and v, prove that [1998 8 Marks]
 - (a) $(\vec{u} \cdot \vec{v})^2 + |\vec{u} \times \vec{v}|^2 = |\vec{u}|^2 |\vec{v}|^2$ and
 - (b) $(1+|\vec{u}|^2)(1+|\vec{v}|^2) = (1-\vec{u}\cdot\vec{v})^2 + |\vec{u}+\vec{v}+(\vec{u}\times\vec{v})|^2$.
- 67. If A, B and C are vectors such that $|\vec{B}| = |\vec{C}|$. Prove that $(\vec{A} + \vec{B}) \times (\vec{A} + \vec{C}) \times (\vec{B} \times \vec{C}) (\vec{B} + \vec{C}) = 0.$ [1997 - 5 Marks]
- 68. The position vectors of the vertices A, B and C of a tetrahedron ABCD are $\hat{i} + \hat{j} + \hat{k}$, \hat{i} and $3\hat{i}$, respectively. The altitude from vertex D to the opposite face ABC meets the median line through A of the triangle ABC at a point E. If the length of the side AD is 4 and the volume of the

tetrahedron is $\frac{2\sqrt{2}}{3}$, find the position vector of the point E for all its possible positions. [1996 - 5 Marks]

- 69. If the vectors b, \bar{c}, \bar{d} , are not coplanar, then prove that the $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) + (\vec{a} \times \vec{c}) \times (\vec{d} \times \vec{b}) + (\vec{a} \times \vec{d}) \times (\vec{b} \times \vec{c})$ is [1994 - 4 Marks] parallel to a.
- 70. Let $\vec{A} = 2\vec{i} + \vec{k}$, $\vec{B} = \vec{i} + \vec{j} + \vec{k}$, and $\vec{C} = 4\vec{i} - 3\vec{j} + 7\vec{k}$. Determine a vector \vec{R} . Satisfying $\overrightarrow{R} \times \overrightarrow{B} = \overrightarrow{C} \times \overrightarrow{B}$ and $\overrightarrow{R} \cdot \overrightarrow{A} = 0$ [1990 - 3 Marks]
- 71. If vectors \overline{a} , \overline{b} , \overline{c} are coplanar, show that

$$\begin{vmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\ \overrightarrow{a} & \overrightarrow{a} & \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{a} & \overrightarrow{c} \\ \overrightarrow{b} & \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{b} & \overrightarrow{b} & \overrightarrow{c} \end{vmatrix} = \overrightarrow{0}$$
 [1989 - 2 Marks]

72. If A, B, C, D are any four points in space, prove that -[1987 - 2 Marks] $\overrightarrow{AB} \times \overrightarrow{CD} + \overrightarrow{BC} \times \overrightarrow{AD} + \overrightarrow{CA} \times \overrightarrow{BD}$

= 4 (area of triangle ABC)

- 73. The position vectors of the points A, B, C and D are $3\hat{i} - 2\hat{j} - \hat{k}$, $2\hat{i} + 3\hat{j} - 4\hat{k}$, $-\hat{i} + \hat{j} + 2\hat{k}$ and $4\hat{i} + 5\hat{j} + \lambda \hat{k}$, respectively. If the points A, B, C and D lie on a plane, find the value of λ . [1986 - 21/2 Marks]
- 74. Find all values of λ such that $x, y, z, \neq (0, 0, 0)$ and $(\vec{i} + \vec{j} + 3\vec{k})x + (3\vec{i} - 3\vec{j} + \vec{k})v + (-4\vec{i} + 5\vec{j})z$

 $=\lambda(x\vec{i}\times\vec{j}\ y+\vec{k}\ z)$ where \vec{i} , \vec{j} , \vec{k} are unit vectors along the coordinate axes. [1982 - 3 Marks]

 $A_1, A_2, \dots A_n$ are the vertices of a regular plane polygon with n sides and O is its centre. Show that

 $\sum_{i=1}^{n-1} (\overrightarrow{OA}_i \times \overrightarrow{OA}_{i+1}) = (1-n)(\overrightarrow{OA}_2 \times \overrightarrow{OA}_1) [1982 - 2 \text{ Marks}]$

Answer Key MA and to be a control of the state of the sta

Topic-1: Algebra of Vectors, Linear Dependence & Independence of Vectors, Vector Inequality

- 1. (a) 2. (b) 3. (a) 4. (5) 5. True 6. (d)

- 7. (A)-p, r, s; (B)-p; (C)-p, q; (D)-s, t

8. (A)-q; (B)-p, q; (C)-p, q, s, t; (D)-q, t

Topic-2: Scalar or Dot Product of two Vectors

- 2. (a)
- 3. (b)
- 4. (b)

- 5. (b) 6. (b) 7. (a) 8. (2) 9. (3)

- $\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2}\right) \vec{b}, \vec{a} \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2}\right) \vec{b}$
- 11. (2i-j) 12. orthocentre
- 13. $5\sqrt{2}$ 14. (a, c, d)

15. (a, c) 16. A-q, B-p, C-s, D-t

Topic-3: Vector or Cross Product of two vectors, Scalar & Vector Triple Product

- 1. (b) 2. (c)
- 3. (b)
- 4. (c)
- 5. (a)
- 6. (b)
- 7. (c)
- 8. (a)
- 9. (c) 10. (c)

- 11. (c) 12. (c)
- 13. (c) 14. (a)
- 15. (a) 16. (b)
- 17. (a)
- 18. (b)
- 19. (d) 20. (a)
- 22. (b) 23. (d) 25. (d) 24. (d)
 - 27. (7) 28. (3) 29. (9)
- **34.** (6) **35.** (\hat{a}) **36.** $\frac{\hat{j}-\hat{k}}{\sqrt{2}}$, $\frac{-\hat{j}+\hat{k}}{\sqrt{2}}$ **37.** (1) **38.** $\frac{5}{3}\hat{i}+\frac{2}{3}\hat{j}+\frac{2}{3}\hat{k}$ 32. (5) 33. (18)
- 39. 40. (-1)
- - 42. False 43. True 44. True 45. (b,c,d) 46. (a,b,c) 47. (b,c,d)

- 41. $\sqrt{13}$ 48. (a,c,d) 49. (a,b,c) 50. (a,d)
- 51. (a, c) 52. (a, c) 53. (c)
- 54. (b) 55. (c) 56. (a) 57. (c)

- 58. (A)-q,s; (B)-p,r,s,t; (C)-t; (D)-r

Hints & Solutions

Topic-1: Algebra of Vectors, Linear Dependence & Independence of Vectors, Vector Inequality

(a) Since $\overrightarrow{PQ} = 6\hat{i} + \hat{j}$, $\overrightarrow{QR} = -\hat{i} + 3\hat{j}$, $\overrightarrow{SR} = 6\hat{i} + \hat{j}$, $\overrightarrow{PS} = -\hat{i} + 3\hat{j}$.

Here $\overrightarrow{PQ} = \overrightarrow{SR}$; $\overrightarrow{QR} = \overrightarrow{PS}$ and \overrightarrow{PQ} . $\overrightarrow{PS} \neq 0$

Also PQ ≠ QR

⇒ PQRS is a parallelogram but neither a rhombus nor a

(b) Let $\alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}, \beta \hat{i} + \gamma \hat{j} + \alpha \hat{k}$ and $\gamma \hat{i} + \alpha \hat{j} + \beta \hat{k}$ be position vectors of points A, B and C respectively, then

$$|\overrightarrow{AB}| = \sqrt{(\beta - \alpha)^2 + (\gamma - \beta)^2 + (\alpha - \gamma)^2}$$
$$|\overrightarrow{BC}| = \sqrt{(\gamma - \beta)^2 + (\alpha - \gamma)^2 + (\alpha - \beta)^2}$$
$$|\overrightarrow{CA}| = \sqrt{(\alpha - \gamma)^2 + (\beta - \alpha)^2 + (\gamma - \beta)^2}$$

- $|\overrightarrow{AB}| = |\overrightarrow{BC}| = |\overrightarrow{CA}|$
- ⇒ ΔABC is an equilateral triangle.
- (a) Let $60\hat{i} + 3\hat{j}$, $40\hat{i} 8\hat{j}$ and $a\hat{i} 52\hat{j}$ be position vector of points A, B and C respectively.

$$\vec{AB} = 40\hat{i} - 8\hat{j} - 60\hat{i} - 3\hat{j} = -20\hat{i} - 11\hat{j}$$

and
$$\overrightarrow{AC} = a\hat{i} - 52\hat{j} - 60\hat{i} - 3\hat{j} = (a - 60)\hat{i} - 55\hat{j}$$

Given that A, B and are collinear

$$\therefore \quad \overrightarrow{AB} \parallel \overrightarrow{AC} \Rightarrow \frac{a-60}{-20} = \frac{-55}{-11} \Rightarrow a = -40$$

- (5) Given 8 vectors are
 - (1, 1, 1), (-1, -1, -1); (-1, 1, 1), (1, -1, -1); (1, -1, 1),(-1, 1, -1); (1, 1, -1), (-1, -1, 1)

These are 4 diagonals of a cube and their opposites. For 3 non coplanar vectors first we select 3 groups of diagonals and its opposite in 4C_3 ways. Then one vector from each group can be selected in $2 \times 2 \times 2$ ways.

- $\therefore \text{ Total ways} = {}^{4}C_{3} \times 2 \times 2 \times 2 = 32 = 2^{5}$
- True: Let $\vec{a} + \vec{b}$, $\vec{a} \vec{b}$ and $\vec{a} + k\vec{b}$ be position vectors of points A, B and C respectively.

Then,
$$\overrightarrow{AB} = (\overrightarrow{a} - \overrightarrow{b}) - (\overrightarrow{a} + \overrightarrow{b}) = -2\overrightarrow{b}$$

and
$$\overrightarrow{BC} = \vec{a} + k\vec{b} - \vec{a} + \vec{b} = (k+1)\vec{b}$$

- $\Rightarrow \overrightarrow{AB} \parallel \overrightarrow{BC} \ \forall k \in R$
- \Rightarrow A,B, C are collinear $\forall k \in R$
- : Statement is true.

(d) Given that, $\vec{a} = \hat{i} + \hat{j} + \hat{k}, \vec{b} = 4\hat{i} + 3\hat{j} + 4\hat{k}$

and $\vec{c} = \hat{i} + \alpha \hat{j} + \beta \hat{k}$ are linearly dependent,

$$\therefore \left[\vec{a} \, \vec{b} \, \vec{c} \right] = 0$$

$$\Rightarrow \begin{vmatrix} 1 & 1 & 1 \\ 4 & 3 & 4 \\ 1 & \alpha & \beta \end{vmatrix} = 0$$

Applying $R_2 \rightarrow R_2 - R_1$ and $R_3 \rightarrow R_3 - R_1$

$$\Rightarrow \begin{vmatrix} 1 & 0 & 0 \\ 4 & -1 & 0 \\ 1 & \alpha & -1 & \beta & -1 \end{vmatrix} = 0$$

$$\Rightarrow \beta - 1 = 0 \Rightarrow \beta = 1$$

Also given that $|c| = \sqrt{3} \implies 1 + \alpha^2 + \beta^2 = 3$

Substituting the value of β we get $\alpha^2 = 1$

- $\Rightarrow \alpha = \pm 1$
- $(A)\rightarrow p, r, s; (B)\rightarrow p; (C)\rightarrow p, q; (D)\rightarrow s, t$
 - (A) Since, $2(a^2 b^2) = c^2$
 - $\Rightarrow 2(\sin^2 x \sin^2 y) = \sin^2 z$ $\Rightarrow 2\sin(x + y)\sin(x y) =$ $\Rightarrow 2\sin(x y) = \sin z$
 - $2\sin(x+y)\sin(x-y) = \sin^2 z$
 - $(\because \sin(x+y) = \sin z)$

$$\Rightarrow \frac{\sin(x-y)}{\sin z} = \frac{1}{2} = \lambda$$
 (Given

- $\therefore \quad \cos(n\pi\lambda) = 0 \Rightarrow \cos\frac{n\pi}{2} = 0 \Rightarrow n = 1, 3, 5$
- (B) $1 + \cos 2X 2\cos 2Y = 2\sin X \sin Y$
- \Rightarrow $2\cos^2 X 2(1-2\sin^2 Y) = 2\sin X \sin Y$
- \Rightarrow 1 sin²X 1 + 2sin²Y = sinXsinY
- $\Rightarrow \sin^2 X + \sin X \sin Y 2\sin^2 Y = 0$
- \Rightarrow $(\sin X \sin Y) (\sin X + 2\sin Y) = 0$

$$\Rightarrow \frac{\sin X}{\sin Y} = 1 \text{ or } -2 :: \frac{a}{b} = 1.$$

(C) $P(\sqrt{3}, 1), Q(1, \sqrt{3}), R(\beta, 1-\beta)$

From figure, acute angle bisector of $\angle XOY$ is y = x.

Distance of $R(\beta, 1-\beta)$ from bisector

$$= \left| \frac{\beta - 1 + \beta}{\sqrt{2}} \right| = \frac{3}{\sqrt{2}}$$

$$\Rightarrow 2\beta - 1 = \pm 3 \text{ or } \beta = 2 \text{ or } -1$$

$$|\beta| = 1, 2$$

(D) For
$$\alpha = 0$$
, $y = 3$
For $\alpha = 1$, $y = |x - 1| + |x - 2| + x$
 $\alpha = 0$

 $F(\alpha)$ is the area bounded by x = 0, x = 2, $y^2 = 4x$ and y = 3

$$F(\alpha) = \int_0^2 (3 - 2\sqrt{x}) dx$$

$$= \left| 3x - \frac{4x\sqrt{x}}{3} \right|_0^2 = 6 - \frac{8\sqrt{2}}{3}$$

$$\therefore F(\alpha) + \frac{8}{3}\sqrt{2} = 6$$

 $\overline{F(\alpha)}$ is the area bounded by x = 0, x = 2, $y^2 = 4x$ and y = |x-1| + |x-2| + x

$$= \begin{cases} 3 - x, 0 \le x < 1 \\ x + 1, 1 \le x < 2 \\ 3x - 3, x \ge 2 \end{cases}$$

$$F(\alpha) = \int_0^1 (3 - x - 2\sqrt{x}) dx + \int_1^2 (x + 1 - 2\sqrt{x}) dx$$

$$= \left(3x - \frac{x^2}{2} - \frac{4x}{3}\sqrt{x}\right)_0^1 + \left(\frac{x^2}{2} + x - \frac{4}{3}x\sqrt{x}\right)_1^2$$

$$= 3 - \frac{1}{2} - \frac{4}{3} + 2 + 2 - \frac{8\sqrt{2}}{3} - \frac{1}{2} - 1 + \frac{4}{3} = 5 - \frac{8\sqrt{2}}{3}$$

$$F(\alpha) + \frac{8\sqrt{2}}{3} = 5$$

8. (A)
$$\rightarrow$$
 q; (B) \rightarrow p, q; (C) \rightarrow p, q, s, t; (D) \rightarrow q, t

(A) Projection of
$$\alpha \hat{i} + \beta \hat{j}$$
 on $\sqrt{3}\hat{i} + \hat{j} \frac{\sqrt{3}\alpha + \beta}{2} = \sqrt{3}$

$$\Rightarrow \quad \alpha = \frac{2\sqrt{3} - \beta}{\sqrt{3}}$$

$$\therefore \frac{2\sqrt{3} - \beta}{\sqrt{3}} = 2 + \sqrt{3}\beta \Rightarrow \beta = 0 \Rightarrow \alpha = 2$$

(B) LHD =
$$f'(1) = -6a$$
 and RHD = $f'(1) = b$
 $-6a = b$...(i)
Also f is continuous at $x = 1$

$$\therefore -3a-2=b+a^2$$

Also f is continuous at
$$x = 1$$
,

$$\therefore -3a - 2 = b + a^2$$

$$\Rightarrow a^2 - 3a + 2 = 0$$
 (from (i))

$$\Rightarrow a=1,2$$

(C) $(3 - 3\omega + 2\omega^2)^{4n + 3} + (2 + 3\omega - 3\omega^2)^{4n + 3} + (-3 + 2\omega + 3\omega^2)^{4n + 3} = 0$ [: $\omega^3 = 1$]

$$\Rightarrow (3-3\omega+2\omega^2)^{4n+3}+\left(\frac{2\omega^2+3-3\omega}{\omega^2}\right)^{4n+3}$$

$$+\left(\frac{-3\omega+2\omega^2+3}{\omega}\right)^{4n+3}=0$$

$$\Rightarrow (3-3\omega+2\omega^2)^{4n+3} \left[1+\omega^{4n+3}+(\omega^2)^{4n+3}\right]=0$$

$$\Rightarrow$$
 4n + 3 should be an integer other than multiple of 3.

$$n = 1, 2, 4, 5$$

(D) : H.M of a and b be 4.

$$\therefore \frac{2ab}{a+b} = 4 \Rightarrow ab = 2a + 2b \qquad \dots (i)$$

Also
$$a + q = 10$$

or
$$a = 10 - q$$

Also
$$a+q=10$$

and $b+5=2q$

or
$$b=2q-3$$

Putting values of a and b in eqⁿ(i), we get

$$q = 4 \text{ or } \frac{15}{2} \Rightarrow a = 6 \text{ or } \frac{5}{2}$$

$$\therefore |q-a|=2 \text{ or } 5.$$

Let a, b, c be the position vectors of vertices A, B and C respectively with respect to origin,

Let AD, BE and CF be the bisectors of $\angle A$, $\angle B$, and $\angle C$ respectively.

Let a, b, c are the lengths of sides BC, CA and AB respectively, we know that by angle bisector theorem BD:DC=AB:AC=c:b.

$$\therefore \text{ The position vector of } D \text{ is } \vec{d} = \frac{b\vec{b} + c\vec{c}}{b+c}$$

Let I be the point of intersection of BE and AD. Then in $\triangle ABD$, BI is bisector of $\angle B$.

:. DI : IA = BD : BA

But
$$\frac{BD}{DC} = \frac{c}{b} \Rightarrow \frac{BD}{BD + DC} = \frac{c}{c + b}$$

 $\Rightarrow \frac{BD}{BC} = \frac{c}{c + b} \Rightarrow BD = \frac{ac}{b + c}$

$$\therefore DI:IA = \frac{ac}{b+c}:c = a:(b+c)$$

$$\therefore \text{ P.V. of } I = \frac{\vec{a} \cdot a + \vec{d}(b+c)}{a+b+c}$$

$$= \frac{a\vec{a} + \left(\frac{b\vec{b} + c\vec{c}}{b + c}\right)(b + c)}{a + b + c} = \frac{a\vec{a} + b\vec{b} + c\vec{c}}{a + b + c}$$
Similarly p.v. of intersection of

AD and CF is also
$$\frac{a\vec{a} + b\vec{b} + c\vec{c}}{a + b + c}$$

Hence all the \angle bisectors passes through I, i.e., these are concurrent.

Let OABC is trapezium and position vector of A,B,C with respect to origin O are $A(\vec{a})$, $C(\vec{b})$, $B(\vec{b} + t\vec{a})$

Equation of
$$\overrightarrow{OB}$$

$$\vec{r} = \lambda(\vec{b} + t\vec{a})$$

Equation of AC:

$$\vec{r} = \vec{a} + \mu(\vec{b} - \vec{a})$$

Let P be the point of intersection \overline{OB} and \overline{AC}

$$\therefore \lambda(\vec{b} + t\vec{a}) = \vec{a} + \mu(\vec{b} - \vec{a})$$

On comparing both sides

Comparing both sides
$$\lambda = \mu$$
 ... (i) $\lambda t = 1 - \mu$... (ii) from (i) and (ii)

$$\lambda = \frac{1}{1+t}$$

$$\therefore P.V \text{ of } P \text{ is } \vec{\mathbf{r}}_1 = \frac{1}{1+t} = (\vec{b} + t\vec{a})$$

Equation of
$$\overrightarrow{RS}$$
: $\overrightarrow{r} = \frac{1}{2}\overrightarrow{a} + \hat{k}\left(\overrightarrow{b} + \frac{1}{2}(t-1)\overrightarrow{a}\right)$

Coefficient of \vec{b} in \vec{r}_1 , $\hat{k} = \frac{1}{t+1}$

$$\vec{r} = \frac{1}{2}\vec{a} + \frac{1}{t+1} \left[\vec{b} + \frac{1}{2}(t-1)\vec{a} \right]$$

$$= \frac{1}{t+1}\vec{b} + \frac{1}{2(t+1)}[t-1+t+1]\vec{a} = \frac{1}{t+1}[\vec{b} + t\vec{a}] = r_1$$
Hence *p* lies on RS.

Hence proved.

11. Let a, b, c, be the position vectors of points A, B and C respectively with respect to origin O.

: D divides BC in the ratio 2: 1 and E divides AC in the

$$\therefore \overrightarrow{OD} = \frac{\overrightarrow{b} + 2\overrightarrow{c}}{3} \text{ and } \overrightarrow{OE} = \frac{\overrightarrow{a} + 3\overrightarrow{c}}{4}$$

Let pt. P divides BE in the ratio k:1 and AD in the ratio m:1,

$$\therefore \overrightarrow{OP} = \frac{\overrightarrow{b} + k\left(\frac{\overrightarrow{a} + 3\overrightarrow{c}}{4}\right)}{k+1} = \frac{\overrightarrow{a} + m\left(\frac{\overrightarrow{b} + 2\overrightarrow{c}}{3}\right)}{m+1}$$

$$\Rightarrow \frac{k}{4(k+1)}\vec{a} + \frac{1}{k+1}\vec{b} + \frac{3k}{4(k+1)}\vec{c}$$

$$= \frac{1}{m+1}\vec{a} + \frac{m}{3(m+1)}\vec{b} + \frac{2m}{3(m+1)}\vec{c}$$

On comparing both sides, we get

$$\Rightarrow \frac{k}{4(k+1)} = \frac{1}{m+1} \qquad \dots (6)$$

$$\frac{1}{k+1} = \frac{m}{3(m+1)} \qquad \dots \text{(ii)}$$

$$\frac{3k}{4(k+1)} = \frac{2m}{3(m+1)}$$
 ... (iii)

Dividing (iii) by (ii) we get

$$\frac{3k}{4} = 2 \Rightarrow k = \frac{8}{3} \Rightarrow$$
 The required ratio is 8:3.

Let a and b be the position vectors of A and B respectively with respect to origin O.

$$\Rightarrow \overline{OE} = \frac{\vec{b}}{2}$$

$$\overrightarrow{OD} = \frac{1.\overrightarrow{a} + 2\overrightarrow{b}}{1+2} = \frac{\overrightarrow{a} + 2\overrightarrow{b}}{3}$$

 \therefore Equation of *OD* is

$$\vec{r} = t \left(\frac{\vec{a} + 2\vec{b}}{3} \right)^{-0.2}$$

and Equation of AE is

$$\vec{r} = \vec{a} + s \left(\frac{\vec{b}}{2} - \vec{a} \right) \tag{ii}$$

Since *OD* and *AE* intersect at *P*, then comparing the coefficients of \vec{a} and \vec{b} , we get

$$\frac{t}{3} = 1 - s$$
 and $\frac{2t}{3} = \frac{s}{2}$ \Rightarrow $t = \frac{3}{5}$ and $s = \frac{4}{5}$

Putting value of t in eq. (i) we get position vector of point

of intersection
$$P$$
 is $\frac{\vec{a} + 2\vec{b}}{5}$... (iii)

Let P divides OD in the ratio λ : 1, then position vector of P is

$$\frac{\lambda \left(\frac{\vec{a}+2\vec{b}}{3}\right)+1.0}{\lambda+1} = \frac{\lambda}{3(\lambda+1)}(\vec{a}+2\vec{b}) \qquad \dots \text{(iv)}$$

From (iii) and (iv) we get

$$\frac{\lambda}{3(\lambda+1)} = \frac{1}{5} \implies 5\lambda = 3\lambda + 3 \Rightarrow \lambda = 3/2$$

$$\therefore OP:PD=3:2$$

13. Given OACB is a parallelogram with O as origin.

Let
$$\overrightarrow{OA} = \vec{a}$$
, $\overrightarrow{OB} = \vec{b} \Rightarrow \overrightarrow{OC} = \vec{a} + \vec{b}$ and $\overrightarrow{OD} = \frac{\vec{a}}{2}$.

Let \overrightarrow{CO} and \overrightarrow{BD} intersect each other at P. Let P dividing CO in ratio $\lambda:1$

$$\overrightarrow{OP} = \frac{\lambda \times 0 + 1 \times (\overrightarrow{a} + \overrightarrow{b})}{\lambda + 1} = \frac{(\overrightarrow{a} + \overrightarrow{b})}{\lambda + 1} \qquad \dots (i)$$

And P dividing BD in the ratio μ : 1

$$\overrightarrow{OP} = \frac{\mu\left(\frac{\vec{a}}{2}\right) + 1(\vec{b})}{\mu + 1} = \frac{\mu \vec{a} + 2\vec{b}}{2(\mu + 1)} \qquad \dots (ii)$$

From (i) and (ii)

$$\frac{\vec{a} + \vec{b}}{\lambda + 1} = \frac{\mu \vec{a} + 2\vec{b}}{2(\mu + 1)}$$

Equating the coefficients of \vec{a} and \vec{b} , we get

$$\frac{1}{\lambda+1} = \frac{\mu}{2(\mu+1)} \qquad \dots \text{(iii)}$$

$$\frac{1}{\lambda+1} = \frac{1}{\mu+1} \qquad \dots \text{(iv)}$$

From (iv) we get $\lambda = \mu \Rightarrow P$ divides CO and BD in the same ratio.

Putting $\lambda = \mu$ in eq. (iii) we get $\mu = 2$

Thus required ratio is 2:1.

14. Since vector \vec{A} has components A_1, A_2, A_3 , in the coordinate system OXYZ,

$$\vec{A} = \hat{i}A_1 + \hat{j}A_2 + \hat{k}A_3$$

When given system is rotated through $\frac{\pi}{2}$, the new x-axis is along old y-axis and new y-axis is along the old negative x-axis and z remains same as before. Hence the components of A in the new system are $A_2, -A_1, A_3$.

$$\vec{A}$$
 becomes $A_2\hat{i} - A_1\hat{j} + A_2\hat{k}$.

Topic-2: Scalar or Dot Product of two Vectors

1. (c) We know that vector in the plane of \vec{a} and \vec{b} is $\vec{v} = \vec{a} + \lambda \vec{b}$

$$\Rightarrow \vec{v} = (1+\lambda)\hat{i} + (1-\lambda)\hat{j} + (1+\lambda)\hat{k}$$

$$\therefore$$
 Projection of \vec{v} on \vec{c} is $\frac{1}{\sqrt{3}}$

$$\therefore \quad \frac{\vec{v} \cdot \vec{c}}{|\vec{c}|} = \frac{1}{\sqrt{3}} \Rightarrow \frac{(1+\lambda) - (1-\lambda) - (1+\lambda)}{\sqrt{3}} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow 1-\lambda=-$$

 $\Rightarrow \lambda=2$

2. (a) Given, $\overline{OP} = \hat{a}\cos t + \hat{b}\sin t$

$$\left|\overline{OP}\right|^2 = \left|\hat{a}\right|^2 \cos^2 t + \left|\hat{b}\right|^2 \sin^2 t + 2\hat{a} \cdot \hat{b} \sin t \cos t$$

$$\Rightarrow \left| \overline{OP} \right|^2 = \cos^2 t + \sin^2 t + 2\hat{a}\hat{b}\sin t \cos t$$

$$\Rightarrow \left| \overrightarrow{OP} \right|^2 = 1 + \hat{a} \cdot \hat{b} \sin 2t$$

$$|\overrightarrow{OP}| = \sqrt{1 + \hat{a} \cdot \hat{h} \sin 2t}$$

$$\therefore |\overrightarrow{OP}|_{\max} = \sqrt{1 + \hat{a} \cdot \hat{b}} = M \text{ at } \sin 2t = 1 \Rightarrow t = \frac{\pi}{4}$$

$$\therefore (\overrightarrow{OP})_{\text{max}} = \frac{\hat{a} + \hat{b}}{\sqrt{2}} \therefore (\widehat{OP})_{\text{max}} = \frac{\hat{a} + \hat{b}}{|\hat{a} + \hat{b}|}$$

Hence
$$\hat{\mathbf{u}} = \frac{\hat{a} + \hat{b}}{|\hat{a} + \hat{b}|}$$
 and $\mathbf{M} = \sqrt{1 + \hat{a} \cdot \hat{b}}$

3. (b) We observe that

$$\vec{a}.\vec{b}_1 = \vec{a}.\vec{b} - \left(\frac{\vec{b}.\vec{a}}{|\vec{a}|^2}\right) |\vec{a}|^2 = \vec{a}.\vec{b} - \vec{a}.\vec{b} = 0$$
 ...(i)

$$\vec{a}.\vec{c}_{2} = \vec{a}.\left(\vec{c} - \frac{\vec{c}.\vec{a}}{|\vec{a}|^{2}}\vec{a} - \frac{\vec{c}.\vec{b_{1}}}{|\vec{b_{1}}|^{2}}\vec{b}_{1}\right)$$

$$= \vec{a}.\vec{c} - \frac{\vec{a}.\vec{c}}{|\vec{a}|^2} |\vec{a}|^2 - \frac{\vec{c}.\vec{b_1}}{|\vec{b_1}|^2} (\vec{a}.\vec{b_1})$$

$$= \vec{a}.\vec{c} - \vec{a}.\vec{c} - 0 = 0$$
 [from (i)]
And $\vec{b}_1.\vec{c}_2 = \vec{b}_1.\left(\vec{c} - \frac{\vec{c}.\vec{a}}{|\vec{a}|^2}\vec{a} - \frac{\vec{c}.\vec{b}_1}{|\vec{b}_1|^2}\vec{b}_1\right)$

$$= \vec{b}_1.\vec{c} - \frac{(\vec{c}.\vec{a})(\vec{b}_1.\vec{a})}{|\vec{a}|^2} - \frac{\vec{c}.\vec{b}_1}{|\vec{b}_1|^2}|\vec{b}_1|^2$$

$$= \vec{b}_1.\vec{c} - 0 - \vec{b}_1.\vec{c} = 0$$
 (from (i))
Hence $\vec{a}.\vec{b}_1 = \vec{a}.\vec{c}_2 = \vec{b}_1.\vec{c}_2 = 0$

- \Rightarrow $(\vec{a}, \vec{b}_1, \vec{c}_2)$ is a set of orthogonal vectors.
- 4. (b) Given that \vec{a} and \vec{b} are two unit vectors

$$|\vec{a}| = |\vec{b}| = 1$$

Also, given that $(\vec{a} + 2\vec{b})$ is perpendicular to $(5\vec{a} - 4\vec{b})$

$$\vec{a} = (\vec{a} + 2\vec{b}) \cdot (5\vec{a} - 4\vec{b}) = 0$$

$$\Rightarrow$$
 5 $|\vec{a}|^2 - 8 |\vec{b}|^2 - 4\vec{a}\cdot\vec{b} + 10\vec{b}\cdot\vec{a} = 0$

$$\Rightarrow$$
 5-8+6 $\vec{a}.\vec{b}$ = 0 \Rightarrow 6| \vec{a} || \vec{b} | cos θ = 3

[where θ is the angle between \vec{a} and \vec{b}]

$$\Rightarrow \cos \theta = \frac{1}{2} \Rightarrow \theta = 60^{\circ}$$

5. **(b)** Since \vec{a}, \vec{b} and \vec{c} are units vectors.

$$\therefore |\vec{a}| = |\vec{b}| = |\vec{c}| = 1$$

Let
$$x = |\vec{a} - \vec{b}|^2 + |\vec{b} - \vec{c}|^2 + |\vec{c} - \vec{a}|^2$$

$$= |\vec{a}|^2 + |\vec{b}|^2 - 2\vec{a}.\vec{b} + |\vec{b}|^2 + |\vec{c}|^2 - 2\vec{b}.\vec{c} + |\vec{c}|^2 + |\vec{a}|^2 - 2\vec{c}.\vec{a}$$

$$= 6 - 2(\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}) \qquad \dots (i)$$

We have

$$|\vec{a} + \vec{b} + \vec{c}| \ge 0 \implies |\vec{a} + \vec{b} + \vec{c}|^2 \ge 0$$

$$\Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}) \ge 0$$

$$\Rightarrow$$
 3+2($\vec{a}.\vec{b}+\vec{b}.\vec{c}+\vec{c}.\vec{a}$) \geq 0

$$\Rightarrow 2(\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}) \ge -3$$

$$\Rightarrow -2(\vec{a}.\vec{b}+\vec{b}.\vec{c}+\vec{c}.\vec{a}) \leq 3$$

$$\Rightarrow 6-2(\vec{a}.\vec{b}+\vec{b}.\vec{c}+\vec{c}.\vec{a}) \leq 9$$

 $x \le 9$ (From (i)) : x does not exceed 9

6. **(b)** Since $\vec{u} + \vec{v} + \vec{w} = 0$

$$\Rightarrow |\vec{u} + \vec{v} + \vec{w}|^2 = |\vec{u}|^2 + |\vec{v}|^2 + |\vec{w}|^2 + 2(\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u})$$

$$\Rightarrow 0 = 9 + 16 + 25 + 2(\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u})$$

$$\Rightarrow (\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u}) = -25$$

7. (a) Since R divide PQ internally in ratio 2:3

$$\vec{OR} = \frac{\vec{3p} + 2\vec{q}}{3+2} = \frac{1}{5}(\vec{3p} + 2\vec{q})$$

S divide PQ externally in ratio 2:3

$$\therefore \overrightarrow{OS} = \frac{3\overrightarrow{p} - 2\overrightarrow{q}}{3 - 2} = 3\overrightarrow{p} - 2\overrightarrow{q}$$

Given that $\overrightarrow{OR} \perp \overrightarrow{OS} \implies \overrightarrow{OR}.\overrightarrow{OS} = 0$

$$\Rightarrow \frac{1}{5}[3\vec{p} + 2\vec{q}].(3\vec{p} - 2\vec{q}) = 0$$

$$\Rightarrow$$
 $9|\vec{p}|^2 = 4|\vec{q}|^2 \Rightarrow 9p^2 = 4q^2$

8. (2) $2\vec{p} + \vec{q} = 5\hat{i} + \hat{j} + 7\hat{k}$

$$\vec{p} - 2\vec{q} = 0\hat{i} + 3\hat{i} + \hat{k}$$

$$\vec{p} \times \vec{q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 3 \\ 1 & -1 & 1 \end{vmatrix} = \hat{i}(4) - \hat{j}(-1) + \hat{k}(-3)$$

$$=4\hat{i}+\hat{j}-3\hat{k}$$

$$15\hat{i} + 10\hat{j} + 6\hat{k} = \alpha(5\hat{i} + \hat{j} + 7\hat{k})$$

$$+\beta(3\hat{j}+\hat{k})+\gamma(4\hat{i}+\hat{j}-3\hat{k})$$

$$\therefore 15 = 15\alpha + 4\gamma \qquad \dots (i)$$

$$10 = \alpha + 3\beta + \gamma \qquad ...(ii)$$

$$6 = 7\alpha + \beta - 3\gamma \qquad ...(iii)$$

On solving (i), (ii) and (iii), we get

$$\therefore \alpha = \frac{7}{5}, \beta = \frac{11}{5}, \gamma = 2 \quad \therefore \gamma = 2$$

9. (3) $|\vec{a}| = |\vec{b}| = |\vec{c}| = 1$

$$|\vec{a} - \vec{b}|^2 + |\vec{b} - \vec{c}|^2 + |\vec{c} - \vec{a}|^2 = 9$$

$$\Rightarrow 2(|\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2) - 2(\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}) = 9$$

$$\Rightarrow \vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a} = \frac{-3}{2}$$

Also,

$$\left| \vec{a} + \vec{b} + \vec{c} \right|^2 = \left| \vec{a} \right|^2 + \left| \vec{b} \right|^2 + \left| \vec{c} \right|^2 + 2(\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a})$$

$$=1+1+1+2\times\left(-\frac{3}{2}\right)=0$$

$$\Rightarrow \vec{a} + \vec{b} + \vec{c} = 0 \Rightarrow (\vec{b} + \vec{c}) = -\vec{a}$$

$$|2\vec{a} + 5(\vec{b} + \vec{c})| = |2\vec{a} - 5\vec{a}| = |-3\vec{a}| = 3$$

10. Component of \vec{a} along

$$\vec{b} = \overrightarrow{OD} = (\text{projection of } \vec{a} \text{ on } \vec{b}).\hat{b}$$

$$= \left(\frac{\vec{a}.\vec{b}}{|\vec{b}|}\right) \frac{\vec{b}}{|\vec{b}|} = \left(\frac{\vec{a}.\vec{b}}{|\vec{b}|^2}\right) \vec{b}$$

Component of \vec{a} perpendicular to \vec{b}

$$= \overrightarrow{DA} = \overrightarrow{a} - \overrightarrow{OD} = \overrightarrow{a} - \left(\frac{\overrightarrow{a}\overrightarrow{b}}{|\overrightarrow{b}|^2}\right)\overrightarrow{b}$$

11. Let
$$\vec{c} = a\hat{i} + b\hat{j}$$

$$\therefore \hat{b} \perp \hat{c} \implies \vec{b} \cdot \vec{c} = 0$$

$$\Rightarrow (4\hat{i} + 3\hat{j}) \cdot (a\hat{i} + b\hat{j}) = 0 \Rightarrow 4a + 3b = 0$$

$$\Rightarrow a = -\frac{3b}{4} \Rightarrow \frac{a}{+3} = \frac{b}{-4} = \lambda$$

$$\Rightarrow a = +3\lambda, b = -4\lambda \qquad ...(i)$$

$$\therefore \vec{c} = \lambda \left(3\hat{i} - 4\hat{j}\right)$$

Now, let $\vec{a} = x\hat{i} + y\hat{j}$ be the required vectors.

Projection of
$$\vec{a}$$
 along $\vec{b} = \frac{\vec{a}.\vec{b}}{|\vec{b}|} \Rightarrow \frac{4x + 3y}{\sqrt{4^2 + 3^2}} = 1$
 $\Rightarrow 4x + 3y = 5$...(ii)
Also, projection of \vec{a} along $\vec{c} = 2$

$$\Rightarrow \frac{\vec{a}.\vec{c}}{|\vec{c}|} = 2 \Rightarrow \frac{3\lambda x - 4\lambda y}{\sqrt{(3\lambda)^2 + (-4\lambda)^2}} = 2$$

$$\Rightarrow 3\lambda x - 4\lambda y = 10\lambda \Rightarrow 3x - 4y = 10$$
Solving (ii) and (iii), we get $x = 2$, $y = -1$...(iii)

$$\therefore$$
 The required vector is $2\hat{i} - \hat{j}$

12. Given that the position vectors of points A, B, C and D are \vec{a} , \vec{b} , \vec{c} , \vec{d} respectively, such that

$$(\vec{a} - \vec{d}) \cdot (\vec{b} - \vec{c}) = (\vec{b} - \vec{d}) \cdot (\vec{c} - \vec{a}) = 0$$

$$\Rightarrow \overline{DA} \cdot \overline{CB} = \overline{DB} \cdot \overline{AC} = 0$$

 $\Rightarrow \overline{DA} \perp \overline{CB}$ and $\overline{DB} \perp \overline{AC}$ B

Clearly D is orthocentre of $\triangle ABC$

13. Given that
$$|\vec{A}| = 3$$
; $|\vec{B}| = 4$; $|\vec{C}| = 5$
 $\vec{A} \perp (\vec{B} + \vec{C}) \Rightarrow \vec{A} \cdot (\vec{B} + \vec{C}) = 0$

$$\vec{B} \perp (\vec{C} + \vec{A}) \Rightarrow \vec{B} \cdot (\vec{C} + \vec{A}) = 0$$

$$\vec{C} \perp (\vec{A} + \vec{B}) \Rightarrow \vec{C} \cdot (\vec{A} + \vec{B}) = 0$$

Now,
$$|\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C}|^2 = (\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C}) \cdot (\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C})$$

$$= |\overrightarrow{A}|^2 + \overrightarrow{A} \cdot (\overrightarrow{B} + \overrightarrow{C}) + |\overrightarrow{B}|^2 + \overrightarrow{B} \cdot (\overrightarrow{C} + \overrightarrow{A}) + |\overrightarrow{C}|^2 + \overrightarrow{C} \cdot (\overrightarrow{A} + \overrightarrow{B})$$

$$= |\overrightarrow{A}|^2 + |\overrightarrow{B}|^2 + |\overrightarrow{C}|^2 + 0$$

$$= 9 + 16 + 25 = 50 \therefore |\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C}| = 5\sqrt{2}$$

14. (a, c, d)
$$|\vec{a}| = \frac{1}{3}\sqrt{(4+4+1)} = 1 \implies |\vec{a}| = 1$$

: It is unit vector

Let
$$\vec{b} = 2\hat{i} - 4\hat{j} + 3\hat{k}$$
 then
$$\cos \theta = \frac{\vec{a}\vec{b}}{|\vec{a}||\vec{b}|} = \frac{5}{\sqrt{29}} \implies \theta \neq \frac{\pi}{3}$$
Let $\vec{c} = -\hat{i} + \hat{j} - \frac{1}{2}\hat{k} = \frac{-3}{2}\vec{a} \implies \vec{c} \parallel \vec{a}$
Let $\vec{d} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ then $\vec{a}\vec{d} = 0 \implies \vec{a} \mid \vec{d}$

15. (a, c) Any vector in the plane of \vec{b} and \vec{c} is $\vec{u} = \vec{b} + \lambda \vec{c}$ $= (\hat{i} + 2\hat{j} - \hat{k}) + \lambda(\hat{i} + \hat{j} - 2\hat{k})$ $= (1 + \lambda)\hat{i} + (2 + \lambda)\hat{j} - (1 + 2\lambda)\hat{k}$

Given that magnitude of projection of \vec{u} on \vec{a} is $\sqrt{\frac{2}{3}}$

$$\Rightarrow \sqrt{\frac{2}{3}} = \left| \frac{\vec{u} \cdot \vec{a}}{|\vec{a}|} \right| \Rightarrow \sqrt{\frac{2}{3}} = \left| \frac{2(1+\lambda) - (2+\lambda) - (1+2\lambda)}{\sqrt{6}} \right|$$

$$\Rightarrow |-\lambda - 1| = 2 \Rightarrow \lambda + 1 = 2 \text{ or } \lambda + 1 = -2$$

$$\Rightarrow \lambda = 1 \text{ or } \lambda = -3$$

.. The required vector is either,

$$2\hat{i} + 3\hat{j} - 3\hat{k}$$
 or $-2\hat{i} - \hat{j} + 5\hat{k}$

16. $A \rightarrow q$, $B \rightarrow p$, $C \rightarrow s$, $D \rightarrow t$

A.
$$|\vec{a}| = \sqrt{1+3} = 2$$

 $|\vec{b}| = \sqrt{1+3} = 2$

$$|\vec{c}| = 2\sqrt{3}$$

Using cosine formula

$$\cos C = \frac{|\vec{a}|^2 + |\vec{b}|^2 - |\vec{c}|^2}{2|\vec{a}|\vec{b}|} = \frac{4 + 4 - 12}{2 \times 2 \times 2} = \frac{1}{2}$$

$$\Rightarrow \cos \theta = -\frac{1}{2} \Rightarrow \theta = \frac{2\pi}{3}$$

$$\rightarrow A \rightarrow q$$

B.
$$\int_{a}^{b} (f(x) - 3x) dx = a^2 - b^2$$

$$\Rightarrow \int_{a}^{b} f(x) dx + \frac{3}{2} [-b^{2} + a^{2}] = a^{2} - b^{2}$$

$$\Rightarrow \int_a^b f(x)dx = -\frac{1}{2}(a^2 - b^2) = \int_a^b x \, dx$$

$$\Rightarrow f(x) = x \Rightarrow f\left(\frac{\pi}{6}\right) = \frac{\pi}{6}$$
$$\Rightarrow \mathbf{B} \to \mathbf{n}$$

$$\Rightarrow B \rightarrow p$$

C.
$$\frac{\pi^{2}}{\ell n 3} \int_{\frac{7}{6}}^{\frac{5}{6}} \sec(\pi x) dx = \frac{\pi^{2}}{\pi \ell n 3} \left[\ell n | \sec \pi x + \tan \pi x | \right]_{\frac{7}{6}}^{\frac{5}{6}}$$
$$= \frac{\pi}{\ell n 3} \left[\ell n | \sec \frac{5\pi}{6} + \tan \frac{5\pi}{6} | -\ell n | \sec \frac{7\pi}{6} + \tan \frac{7\pi}{6} | \right]$$
$$= \frac{\pi}{\ell n 3} \left[\ell n \left| -\frac{2}{\sqrt{3}} - \frac{1}{\sqrt{3}} \right| -\ell n \left| -\frac{2}{\sqrt{3}} + \frac{1}{\sqrt{3}} \right| \right] = \frac{\pi}{\ell n 3} \ell n 3 = \pi$$
$$\therefore C \to s$$

D. For
$$|z| = 1$$
 and $z \ne 1$. Let $z = \cos\theta + i \sin\theta$

Then
$$1 - z = 1 - \cos\theta - i\sin\theta = 2\sin^2\frac{\theta}{2} - 2i\sin\frac{\theta}{2}\cos\frac{\theta}{2}$$

or $1 - z = 2\sin\frac{\theta}{2}\left[\sin\frac{\theta}{2} - i\cos\frac{\theta}{2}\right]$

$$2 \begin{bmatrix} 2 \\ \frac{1}{1-z} \end{bmatrix} = \frac{1}{2} \left[1 + i \cot \frac{\theta}{2} \right]$$

Clear that real part of $\frac{1}{1-z}$ is always $\frac{1}{2}$

$$\therefore \text{ Locus of } \frac{1}{1-z} \text{ is } x = \frac{1}{2}$$

$$\left| Arg \left(\frac{1}{1-z} \right) \right|$$
 is maximum when value of ϕ approaches to

$$\frac{\pi}{2}$$
 but will not be attained.

17.

We know that incident ray, reflected ray and normal lie in a same plane, and angle of incidence = angle of reflection.

Therefore unit vector a will be along the angle bisector of \hat{w} and $-\hat{v}$.

i.e.,
$$\hat{a} = \frac{\hat{w} + (-\hat{v})}{|\hat{w} - \hat{v}|}$$
 ...(1)

[: Angle bisector will along a vector dividing in same ratio as the ratio of the sides forming that angle.]

Since
$$|\hat{w} - \hat{v}| = OC = 2OP = 2 |\hat{w}| \cos \theta = 2 \cos \theta$$

Substituting this value in equation (1) we get

$$\hat{a} = \frac{\hat{w} - \hat{v}}{2\cos\theta}$$

$$\hat{w} = \hat{v} + (2\cos\theta)\hat{a} = \hat{v} - 2(\hat{a}.\hat{v})\hat{a} \quad [\because \hat{a}.\hat{v} = -\cos\theta]$$

18. We have $\vec{A}(t)$ is parallel to $\vec{B}(t)$ for some $t \in [0,1]$ if and

$$\frac{f_1(t)}{g_1(t)} = \frac{f_2(t)}{g_2(t)}$$
 for some $t \in [0,1]$

$$\Rightarrow f_1(t).g_2(t) = f_2(t).g_1(t) \text{ for some } t \in [0,1]$$

Let
$$h(t) = f_1(t).g_2(t) - f_2(t).g_1(t)$$

$$h(0) = f_1(0).g_2(0) - f_2(0).g_1(0)$$

= 2 \times 2 - 3 \times 3 = -5 < 0

$$h(1) = f_1(1).g_2(1) - f_2(1).g_1(1)$$

$$=6\times6-2\times2=32>0$$

Since h (t) is a continuous function, and h(0).h(1) < 0

 \Rightarrow There is some $t \in [0,1]$ for which h(t) = 0 i.e., $\bar{A}(t)$ and

B(t) are parallel vectors for this t.

19. From the given data, we get

$$\vec{v}_1 \cdot \vec{v}_1 = 4 \Rightarrow |\vec{v}_1| = 2$$

$$\vec{v}_2 \cdot \vec{v}_2 = 2 \Rightarrow |\vec{v}_1| = \sqrt{2}$$

$$\vec{v}_3 \cdot \vec{v}_3 = 29 \Rightarrow |\vec{v}_3| = \sqrt{29}$$

Let θ is the angle between \vec{v}_1 and \vec{v}_2

$$\vec{v}_1 \cdot \vec{v}_2 = -2 \implies |\vec{v}_1| |\vec{v}_2| \cos \theta = -2$$

$$\Rightarrow \cos \theta = \frac{-1}{\sqrt{2}} \Rightarrow \theta = 135^{\circ}$$

Now, since any two vectors are always coplanar and data is not sufficient so, let us suppose that \vec{v}_1 and \vec{v}_2 are in

Let \vec{v}_1 is along the positive direction of x-axis

then
$$\vec{v}_1 = 2\hat{i}$$
. $[\because |\vec{v}_1| = 2]$

$$\because \ \vec{v}_2 \ \text{makes an angle } 135^\circ \ \text{with} \ \ \vec{v}_1 \ \text{and} \ |\ \vec{v}_2 \ | = \sqrt{2} \ \text{,}$$

$$\therefore \vec{v}_2 = -\hat{i} \pm \hat{j}$$

Let
$$\vec{v}_3 = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$$

$$\vec{v}_3 \cdot \vec{v}_1 = 6 \Rightarrow 2\alpha = 6 \Rightarrow \alpha = 3$$

and
$$\vec{v}_3 \cdot \vec{v}_2 = -5 \Rightarrow -\alpha \pm \beta = -5 \Rightarrow \beta = \pm 2$$

Also
$$|\vec{v}_3| = \sqrt{29} \implies \alpha^2 + \beta^2 + \gamma^2 = 29 \implies \gamma = \pm 4$$

Hence
$$\vec{v}_3 = 3\hat{i} \pm 2\hat{j} \pm 4\hat{k}$$

Thus,
$$\vec{v}_1 = 2\hat{i}$$
; $\vec{v}_2 = -\hat{i} \pm \hat{j}$; $\vec{v}_3 = 3\hat{i} \pm 2\hat{j} \pm 4\hat{k}$ are some possible answers.

20.
$$\vec{a} \cdot \vec{b} = cx^2 - 12 - 6 cx$$

Since
$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

Given that angle between \vec{a} and \vec{b} is obtuse, therefore

$$\cos \theta < 0 \Rightarrow \vec{a}.\vec{b} < 0$$

$$\Rightarrow cx^2 - 12 - 6cx < 0$$

$$\Rightarrow cx^2 - 6cx - 12 < 0, \forall x \in R$$
 ...

Clearly above condition is satisfied if c = 0And c < 0 and D < 0

$$\Rightarrow 36c^2 + 48c < 0 \Rightarrow 12c (3c + 4) < 0$$

$$\therefore \frac{-4}{3} < c \le 0.$$

21. Let with respect to O, position vectors of points A, B, C, D, E, F be \vec{a} , \vec{b} , \vec{c} , \vec{d} , \vec{e} , \vec{f} .

Let perpendiculars from A to EF and from B to DF intersect

each other at H. Let position vector of H be \vec{r} . We join CH. Know we have to prove that CH is perpendicular to DE.

Given that
$$OD \perp \overrightarrow{BC} \implies \overrightarrow{d} \cdot (\overrightarrow{c} - \overrightarrow{b}) = 0$$

$$\Rightarrow \vec{d} \cdot \vec{b} = \vec{d} \cdot \vec{c}$$
 ...(i)

$$OE \perp AC \Rightarrow \vec{e}.(\vec{c}-\vec{a}) = 0 \Rightarrow \vec{e}.\vec{c} = \vec{e}.\vec{a}$$
 ...(ii)

And
$$OF \perp AB \implies \vec{f} \cdot (\vec{b} - \vec{a}) = 0 \implies \vec{f} \cdot \vec{a} = \vec{f} \cdot \vec{b} \dots (iii)$$

Also given that $AH \perp EF \Rightarrow (\vec{r} - \vec{a}) \cdot (\vec{f} - \vec{e}) = 0$

$$\Rightarrow \vec{r}.\vec{f} - \vec{r}.\vec{e} - \vec{a}.\vec{f} + \vec{a}.\vec{e} \qquad ...(iv)$$

and $BH \perp FD \implies (\vec{r} - \vec{b}) \cdot (\vec{d} - \vec{f}) = 0$

$$\Rightarrow \vec{r} \cdot \vec{d} - \vec{r} \cdot \vec{f} - \vec{b} \cdot \vec{d} + \vec{b} \cdot \vec{f} = 0 \qquad \dots (v)$$

Adding (iv) and (v), we get

$$\vec{r} \cdot \vec{d} - \vec{r} \cdot \vec{e} - \vec{a} \cdot \vec{f} + \vec{a} \cdot \vec{e} - \vec{b} \cdot \vec{d} + \vec{b} \cdot \vec{f} = 0$$

$$\Rightarrow \vec{r}.\vec{d} - \vec{r}.\vec{e} + \vec{e}.\vec{c} - \vec{d}.\vec{c} = 0$$

(using (i), (ii) and (iii))

$$\Rightarrow \vec{r}.(\vec{d}-\vec{e})-\vec{c}.(\vec{d}-\vec{e})=0 \Rightarrow (\vec{r}-\vec{c}).(\vec{d}-\vec{e})=0$$

$$\Rightarrow$$
 $\overrightarrow{CH} \cdot \overrightarrow{ED} = 0 \Rightarrow CH \perp ED$ Hence Proved.

Topic-3: Vector or Cross Product of two vectors, Scalar & Vector Triple Product

1. **(b)** P(1, 2, -5), Q(3, 6, 3), R $\left(\frac{17}{5}, \frac{16}{5}, 7\right)$, S(2, 1, 1)

Now,
$$\frac{3}{3} = \frac{1}{3}$$

$$\frac{\lambda}{P(1, 2, -5)} \qquad \left(\frac{7}{3}, \frac{8}{3}, \frac{5}{3}\right) \qquad R\left(\frac{17}{5}, \frac{16}{5}, 7\right)$$

$$\frac{7}{3} = \frac{\frac{17\lambda}{5} + 1}{\lambda + 1}; \frac{8}{3} = \frac{\frac{16\lambda}{5} + 2}{\lambda + 1}; \frac{5}{3} = \frac{7\lambda - 5}{\lambda + 1}$$

$$\Rightarrow \lambda = \frac{5}{4}; \lambda = \frac{5}{4}; \lambda = \frac{5}{4}$$

2. (c) Given that $\vec{a} \times (2\hat{i} + 3\hat{j} + 4\hat{k}) = (2\hat{i} + 3\hat{j} + 4\hat{k}) \times \vec{b}$

$$\Rightarrow (\vec{a} + \vec{b}) \times (2\hat{i} + 3\hat{j} + 4\hat{k}) = \vec{0}$$

But $\vec{a} + \vec{b} \neq 0$ and $2\hat{i} + 3\hat{j} + 4\hat{k} \neq 0$

$$(\vec{a} + \vec{b}) || (2\hat{i} + 3\hat{j} + 4\hat{k}).$$

Let
$$\vec{a} + \vec{b} = \lambda(2\hat{i} + 3\hat{j} + 4\hat{k})$$

Also given that $|\vec{a} + \vec{b}| = \sqrt{29}$ $\Rightarrow \lambda = \pm 1$

$$\vec{a} + \vec{b} = \pm (2\hat{i} + 3\hat{j} + 4\hat{k})$$

So,
$$(\vec{a} + \vec{b}) \cdot (-7\hat{i} + 2\hat{i} + 3\hat{k}) = \pm 4$$

- 3. **(b)** D $A = \begin{bmatrix} D & 0 & 0 \\ A & 0 & 0 \\ \hline AB & \times \overline{AD} & = \begin{bmatrix} \hat{l} & \hat{j} & \hat{k} \\ 2 & 10 & 11 \\ -1 & 2 & 2 \end{bmatrix} = -2\hat{l} 15\hat{j} + 14$
 - $\overrightarrow{AB} \times \overrightarrow{AD} = \sqrt{4 + 225 + 196} = \sqrt{425}$ $|\overrightarrow{AB}| = \sqrt{4 + 100 + 121} = \sqrt{225} = 15$ $|\overrightarrow{AD}| = \sqrt{1 + 4 + 4} = 3$

$$\sin(90 - \alpha) = \frac{\left| \overline{AB} \times \overline{AD} \right|}{\left| \overline{AB} \right| \left| \overline{AD} \right|}$$

$$\therefore \sin(90 - \alpha) = \frac{\sqrt{425}}{15 \times 3} = \frac{\sqrt{17}}{9} \implies \cos\alpha = \frac{\sqrt{17}}{9}$$

- 4. (c) Given: $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are unit vectors, Let $\vec{a} \times \vec{b} = (\sin \alpha) \vec{n_1}$ and $\vec{c} \times \vec{d} = (\sin \beta) \vec{n_2}$ where $\vec{n_1}$ and $\vec{n_2}$ are unit normal vectors then $(\vec{a} \times \vec{b}).(\vec{c} \times \vec{d}) = 1$
 - $\Rightarrow (\sin \alpha) \overrightarrow{n_1} \cdot (\sin \beta) \overrightarrow{n_2} = 1$
 - \Rightarrow sin α sin β $\overrightarrow{n_1} \cdot \overrightarrow{n_2} = 1 \Rightarrow$ sin α sin β cos γ = 1

where γ is the angle between $\overline{n_1}$ and $\overline{n_2}$.

$$\Rightarrow \alpha = \frac{\pi}{2}, \beta = \frac{\pi}{2} \text{ and } \gamma = 0^{\circ}$$

If
$$\gamma = 0^{\circ} \Rightarrow \vec{a} \times \vec{b} \parallel \vec{c} \times \vec{d}$$

Let
$$\vec{a} \times \vec{b} = \lambda(\vec{c} \times \vec{d}) \implies (\vec{a} \times \vec{b}) \cdot \vec{c} = \lambda(\vec{c} \times \vec{d}) \cdot \vec{c} = 0$$

and $(\vec{a} \times \vec{b}) \cdot \vec{d} = \lambda(\vec{c} \times \vec{d}) \cdot \vec{d} = 0$

 $[\vec{a}\,\vec{b}\,\vec{c}] = [\vec{a}\,\vec{b}\,\vec{d}] = 0$

 \vec{a} , \vec{b} , \vec{c} are coplanar and \vec{a} , \vec{b} , \vec{d} are coplanar

$$\Rightarrow \vec{a}, \vec{b}, \vec{c}, \vec{d}$$
 are coplanar

and
$$\alpha = 90^{\circ} \Rightarrow \vec{a} \perp \vec{b}$$
 and $\beta = 90^{\circ} \Rightarrow \vec{c} \perp \vec{d}$

But angle between \vec{a} and \vec{c} is $\pi/3$ (: $\vec{a} \cdot \vec{c} = \frac{1}{2}$)

The possible cases are shown in figures and in any

case \vec{b} and \vec{d} are non-parallel vectors. (a) The volume of a parallelepipe with coterminus edges 5. as the vectors \vec{a} , \vec{b} , \vec{c} is given by $V = \begin{bmatrix} \vec{a} \, \vec{b} \, \vec{c} \end{bmatrix}$

We have
$$\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}^2 = \begin{vmatrix} \vec{a}.\vec{a} & \vec{a}.\vec{b} & \vec{a}.\vec{c} \\ \vec{b}.\vec{a} & \vec{b}.\vec{b} & \vec{b}.\vec{c} \end{vmatrix}$$

$$\Rightarrow V^2 = \begin{vmatrix} 1 & 1/2 & 1/2 \\ 1/2 & 1 & 1/2 \\ 1/2 & 1/2 & 1 \end{vmatrix} = \frac{1}{2} \Rightarrow V = \frac{1}{\sqrt{2}}$$

- (b) Since, $\vec{a} + \vec{b} + \vec{c} = 0$
 - $\Rightarrow \vec{a} \times (\vec{a} + \vec{b} + \vec{c}) = \vec{0}$
 - $\Rightarrow \vec{a} \times \vec{a} + \vec{a} \times \vec{b} + \vec{a} \times \vec{c} = \vec{0} \Rightarrow \vec{a} \times \vec{b} = \vec{c} \times \vec{a}$ $(:\vec{a} \times \vec{a} = 0 \text{ and } \vec{a} \times \vec{c} = -\vec{c} \times \vec{a})$

Similarly, $\vec{b} \times \vec{c} = \vec{c} \times \vec{a}$

$$\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$$

Also since a, b, c are non-parallel and unit vector (these form an equilateral Δ).

$$\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a} \neq \vec{0}$$

(c) Since given three vectors are coplanar.

Applying,
$$R_1 \rightarrow R_1 + R_2 + R_3$$

$$\Rightarrow \begin{vmatrix} 2 - \lambda^2 & 2 - \lambda^2 & 2 - \lambda^2 \\ 1 & -\lambda^2 & 1 \\ 1 & 1 & -\lambda^2 \end{vmatrix} = 0$$

$$\Rightarrow (2-\lambda^2) \begin{vmatrix} 1 & 1 & 1 \\ 1 & -\lambda^2 & 1 \\ 1 & 1 & -\lambda^2 \end{vmatrix} = 0$$

Applying
$$R_2 = R_2 - R_1$$
 and $R_3 = R_3 - R_1$

$$\Rightarrow (2 - \lambda^2) \begin{vmatrix} 1 & 1 & 1 \\ 0 & -(1 + \lambda^2) & 0 \\ 0 & 0 & -(1 + \lambda^2) \end{vmatrix} = 0$$

⇒
$$(2-\lambda^2)(1+\lambda^2)^2 = 0$$
 ⇒ $\lambda = \pm \sqrt{2}$ [: $1+\lambda^2 \neq 0$]
∴ Two real solutions.

(a) We know that a vector in the plane of \vec{a} and \vec{b} is $\vec{u} = \vec{a} + \lambda \vec{b} = (1 + \lambda)\hat{i} + (2 - \lambda)\hat{j} + (1 + \lambda)\hat{k}$

Given that projection of \vec{u} on $\vec{c} = \frac{1}{\sqrt{2}}$

$$\Rightarrow \frac{\vec{u}.\vec{c}}{|\vec{c}|} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \frac{\vec{u}.\vec{c}}{\sqrt{3}} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \vec{u}.\vec{c} = 1 \Rightarrow |1 + \lambda + 2 - \lambda - 1 - \lambda| = 1$$

$$\Rightarrow |2-\lambda|=1 \Rightarrow \lambda=1 \text{ or } 3$$

$$\Rightarrow \vec{u} = 2\hat{i} + \hat{j} + 2\hat{k} \text{ or } 4\hat{i} - \hat{j} + 4\hat{k}$$

(c) We know that any vector which is coplanar to \vec{a} and \vec{b} can be written as

$$\vec{r} = \vec{a} + \lambda \vec{b} = (\hat{i} - \hat{j} + \hat{k}) + \lambda (2\hat{i} + \hat{j} + \hat{k})$$

$$\vec{r} = (1+2\lambda)\hat{i} + (-1+\lambda)\hat{j} + (1+\lambda)\hat{k}$$

Since \vec{r} is orthogonal to $5\hat{i} + 2\hat{j} + 6\hat{k}$

$$\Rightarrow \vec{r} \cdot (5\hat{i} + 2\hat{j} + 6\hat{k}) = 0$$

$$\Rightarrow 5(1+2\lambda)+2(-1+\lambda)+6(1+\lambda)=0$$

$$\Rightarrow 9 + 18\lambda = 0 \Rightarrow \lambda = -\frac{1}{2}$$

and to
$$i$$
 ou \vec{r} is $3\hat{j} - \hat{k} \supset 1$

$$\vec{r} = \frac{3\hat{j} - \hat{k}}{\sqrt{10}}$$

10. (c) We have $(\vec{a} \times \vec{b}) \times \vec{a} = (\vec{a} \cdot \vec{a}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{a}$

$$\therefore \quad (\hat{j} - \hat{k}) \times (\hat{i} + \hat{j} + k) = (\sqrt{3})^2 (\vec{b}) - (\hat{i} + \hat{j} + k)$$

$$\Rightarrow 2\hat{i} - \hat{j} - \hat{k} = 3\vec{b} - (\hat{i} + \hat{j} + \hat{k})$$

$$\Rightarrow 3\hat{b} = 3\hat{i} \Rightarrow \hat{b} = \hat{i}$$
11. (c) Volume of parallelopiped:

$$V = \begin{vmatrix} 1 & a & 1 \\ 0 & 1 & a \\ a & 0 & 1 \end{vmatrix}$$

$$= 1(1-0) - a(0-a^2) + 1(0-a) = 1 + a^3 - a$$

$$\frac{dV}{da} = 3a^2 - 1$$

For max, and min

$$\Rightarrow$$
 $3a^2 - 1 = 0 \Rightarrow a = \pm \frac{1}{\sqrt{3}}$

$$\frac{d^2V}{da^2} = 6a \Rightarrow \left(\frac{d^2V}{da^2}\right)_{a=\frac{1}{\sqrt{3}}} = \frac{6}{\sqrt{3}} > 0$$

 \therefore V is minimum at $a = \frac{1}{\sqrt{3}}$

12. (c) Given that $\vec{V} = 2\hat{i} + \hat{j} - \hat{k}$ and $\vec{W} = \hat{i} + 3\hat{k}$ and \vec{U} is a unit vector $\vec{U} = 1$

$$\vec{V} \times \vec{W} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & -1 \\ 1 & 0 & 3 \end{vmatrix} = 3\hat{i} - 7\hat{j} - \hat{k}$$

Now,
$$[\overrightarrow{U}\overrightarrow{V}\overrightarrow{W}] = \overrightarrow{U}.(\overrightarrow{V} \times \overrightarrow{W})$$

$$= \vec{U}.(3\hat{i} - 7\hat{j} - \hat{k}) = |\vec{U}|\sqrt{3^2 + 7^2 + 1^2}\cos\theta$$

$$=\sqrt{59}\cos\theta$$

which is max. when $\cos \theta = 1$

- \therefore Max. value of $[\overrightarrow{U}V\overrightarrow{W}] = \sqrt{59}$
- 13. (c) $[\vec{abc}] = \begin{vmatrix} 1 & 0 & -1 \\ x & 1 & 1-x \\ y & x & 1+x-y \end{vmatrix}$

$$= 1(1+x-y-x+x^2) - 1(x^2-y) = 1$$

 \therefore It neither depends on x nor on y.

14. (a) Since $\vec{a}, \vec{b}, \vec{c}$ are unit coplanar vectors, then their linear combination $\vec{2a} - \vec{b}, \vec{2b} - \vec{c}$ and $\vec{2c} - \vec{a}$ are also coplanar vectors.

Thus, $[\overrightarrow{2a} - \overrightarrow{b} \quad \overrightarrow{2b} - \overrightarrow{c} \quad \overrightarrow{2c} - \overrightarrow{a}] = 0$

- 15. (a) \therefore P_1 is the plane determined by vectors \vec{a} and \vec{b} Let $\vec{n_1}$ be normal vector of P_1 then $\vec{n_1} = \vec{a} \times \vec{b}$ Now, P_2 is the plane determined by vectors \vec{c} and \vec{d} Let $\vec{n_2}$ be normal vector of P_2 then $\vec{n_2} = \vec{c} \times \vec{d}$ Now given that $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = 0$
 - $\vec{n_1} \times \vec{n_2} = 0 \implies \vec{n_1} \parallel \vec{n_2}$ and hence the planes will also be parallel to each other.
 Thus angle between the planes = 0.

16. (b) Given that $\vec{a} + \vec{b} + \vec{c} = 0$ (by triangle law)

$$\vec{a} \times (\vec{a} + \vec{b} + \vec{c}) = \vec{a} \times \vec{0} = \vec{0}$$

$$\Rightarrow \vec{a} \times \vec{a} + \vec{a} \times \vec{b} + \vec{a} \times \vec{c} = \vec{0}$$

$$\Rightarrow \vec{a} \times \vec{b} = \vec{c} \times \vec{a} \qquad [\because \vec{a} \times \vec{a} = 0 \text{ and } \vec{a} \times \vec{c} = -\vec{c} \times \vec{a}]$$
Similarly, $\vec{a} \times \vec{b} = \vec{b} \times \vec{c}$;
Therefore $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$.

17. (a) Let $\vec{c} = x\hat{i} + y\hat{j} + z\hat{k}$

Given that \vec{a}, \vec{b} and \vec{c} are coplanar

$$\therefore \begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \\ x & y & z \end{vmatrix} = 0 \Rightarrow x - y - z = 0 \qquad \dots(i)$$

$$\vec{c}$$
 is \vec{d} to \vec{d} , $\vec{d} \cdot \vec{c} = 0$
 $2x + y + z = 0$...(ii)

from (i) and (ii)

$$\frac{x}{0} = \frac{y}{3} = \frac{z}{-3} = \lambda \implies x = 0, y = 3\lambda \text{ and } z = -3\lambda$$

But
$$|\vec{c}| = 1 \Rightarrow x^2 + y^2 + z^2 = 1$$

$$\Rightarrow 9\lambda^2 + 9\lambda^2 = 1 \Rightarrow \lambda = \pm \frac{1}{3\sqrt{3}}$$

$$\therefore \vec{c} = \pm \frac{1}{\sqrt{2}} \left(-\hat{j} + \hat{k} \right)$$

Thus, we have $\vec{c} = \frac{1}{\sqrt{2}} \left(-\hat{j} + \hat{k} \right)$

18. (b) $|(\vec{a} \times \vec{b}) \times \vec{c}| = |\vec{a} \times \vec{b}| |\vec{c}| \sin 30^{\circ}$

$$= \frac{1}{2} |\vec{a} \times \vec{b}| |\vec{c}| \qquad \dots (i)$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & -2 \\ 1 & 1 & 0 \end{vmatrix} = 2\hat{i} - 2\hat{j} + \hat{k}$$

$$\Rightarrow |\vec{a} \times \vec{b}| = \sqrt{9} = 3$$

Also given that
$$|\vec{c} - \vec{a}| = 2\sqrt{2} \implies |\vec{c} - \vec{a}|^2 = 8$$

$$\Rightarrow |\vec{c}|^2 - \vec{c} \cdot \vec{a} - \vec{a} \cdot \vec{c} + |\vec{a}|^2 = 8$$

$$|\vec{a}| = 3$$
 and $\vec{a} \cdot \vec{c} = |\vec{c}|$, we get

$$|\vec{c}|^2 - 2|\vec{c}| + 1 = 0 (|\vec{c}| - 1)^2 = 0 \Rightarrow |\vec{c}| = 1$$

Substituting values of $|\vec{a} \times \vec{b}|$ and $|\vec{c}|$ in (i), we get

$$|(\vec{a} \times \vec{b}) \times \vec{c}| = \frac{1}{2} \times 3 \times 1 = \frac{3}{2}$$

19. **(d)** $(\vec{a} + \vec{b} + \vec{c}).[(\vec{a} + \vec{b}) \times (\vec{a} + \vec{c})]$ $= (\vec{a} + \vec{b} + \vec{c}).[\vec{a} \times \vec{a} + \vec{a} \times \vec{c} + \vec{b} \times \vec{a} + \vec{b} \times \vec{c}]$ $= (\vec{a} + \vec{b} + \vec{c}).[\vec{a} \times \vec{c} + \vec{b} \times \vec{a} + \vec{b} \times \vec{c}] \quad [\because \vec{a} \times \vec{a} = 0]$ $= \vec{a}.(\vec{a} \times \vec{c}) + \vec{a}.(\vec{b} \times \vec{a}) + \vec{a}.(\vec{b} \times \vec{c}) + \vec{b}.(\vec{a} \times \vec{c})$

$$\begin{split} &+\vec{b}.\left(\vec{b}\times\vec{a}\right)+\vec{b}.\left(\vec{b}\times\vec{c}\right)+\vec{c}.\left(\vec{a}\times\vec{c}\right)+\vec{c}.\left(\vec{b}\times\vec{a}\right)+\vec{c}.\left(\vec{b}\times\vec{c}\right)\\ &=[\vec{a}\vec{b}\vec{c}]-[\vec{a}\vec{b}\vec{c}]-[\vec{a}\vec{b}\vec{c}] = -[\vec{a}\vec{b}\vec{c}]\left[\because [\vec{a}\vec{a}\vec{b}]=0\right] \end{split}$$

20. (a) Since
$$\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b} + \vec{c}}{\sqrt{2}}$$

$$\therefore (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} = \frac{1}{\sqrt{2}} \vec{b} + \frac{1}{\sqrt{2}} \vec{c}$$

 $[\because \vec{b} \text{ and } \vec{c} \text{ are non-coplanar}]$ On comparing both sides, we get

$$\Rightarrow \vec{a}.\vec{c} = \frac{1}{\sqrt{2}} \text{ and } \vec{a}.\vec{b} = -\frac{1}{\sqrt{2}} \Rightarrow \cos\theta = -\frac{1}{\sqrt{2}}$$
$$\Rightarrow \cos\theta = \cos\frac{3\pi}{4} \Rightarrow \theta = 3\pi/4$$

21. (a) Let
$$\vec{d} = x\hat{i} + y\hat{j} + z\hat{k}$$

Given that
$$|\vec{d}| = 1 \implies x^2 + y^2 + z^2 = 1$$
(i)

Now,
$$\begin{bmatrix} \vec{b} \ \vec{c} \ \vec{d} \end{bmatrix} = 0 \Rightarrow \begin{vmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ x & y & z \end{vmatrix} = 0$$

$$\Rightarrow x + y + z = 0$$

$$\Rightarrow 2x + z = 0$$
 (from (i))

$$\Rightarrow z = -2x$$
 ...(iii)

From (i), (ii) and (iii)

$$x^2 + x^2 + 4x^2 = 1 \implies x = \pm \frac{1}{\sqrt{6}}$$

$$\therefore d = \pm \left(\frac{1}{\sqrt{6}}\vec{i} + \frac{1}{\sqrt{6}}\vec{j} - \frac{2}{\sqrt{6}}\vec{k}\right) = \pm \left(\frac{\vec{i} + \vec{j} - 2\vec{k}}{\sqrt{6}}\right)$$

22. (b) Given that a, b, c are distinct non negative numbers and the vectors $a\hat{i} + a\hat{j} + c\hat{k}$, $\hat{i} + \hat{k}$ and $c\hat{i} + c\hat{j} + b\vec{k}$ are coplanar.

$$\begin{vmatrix} a & a & c \\ 1 & 0 & 1 \\ c & c & b \end{vmatrix} = 0$$

Applying $C_3 \rightarrow C_3 - C_1$

$$\Rightarrow \begin{vmatrix} a & a & c-a \\ 1 & 0 & 0 \\ c & c & b-c \end{vmatrix} = 0$$

Expanding along R_2 , we get = [c(c-a)-a(b-c)] = 0 $\Rightarrow c^2 - ac - ab + ac = 0$

$$\Rightarrow c^2 - ac - ab + ac = 0$$

$$\Rightarrow c^2 = ab \Rightarrow a, c, b \text{ are in GP.}$$

$$\therefore c \text{ is the GM. of } a \text{ and } b.$$

(d) Given that $\vec{a}, \vec{b}, \vec{c}$ are non coplanar 23. $|\vec{a}\vec{b}\vec{c}| \neq 0$

And
$$\vec{p} = \frac{\vec{b} \times \vec{c}}{[\vec{a} \ \vec{b} \ \vec{c}]}, \ \vec{q} = \frac{\vec{c} \times \vec{a}}{[\vec{a} \ \vec{b} \ \vec{c}]}, \ \vec{r} = \frac{\vec{a} \times \vec{b}}{[\vec{a} \ \vec{b} \ \vec{c}]}$$

Now, $(\vec{a} + \vec{b}) \cdot \vec{p} + (\vec{b} + \vec{c}) \cdot \vec{q} + (\vec{c} + \vec{a}) \cdot \vec{r}$

$$= (\vec{a} + \vec{b}) \cdot \frac{\vec{b} \times \vec{c}}{[\vec{a}\vec{b}\vec{c}]} + (\vec{b} + \vec{c}) \cdot \frac{\vec{c} \times \vec{a}}{[\vec{a}\vec{b}\vec{c}]} + (\vec{c} + \vec{a}) \cdot \frac{\vec{a} \times \vec{b}}{[\vec{a}\vec{b}\vec{c}]}$$

$$= \frac{\vec{a}.(\vec{b}\times\vec{c})}{[\vec{a}\ \vec{b}\ \vec{c}]} + \frac{\vec{b}.(\vec{c}\times\vec{a})}{[\vec{a}\ \vec{b}\ \vec{c}]} + \frac{\vec{c}.(\vec{a}\times\vec{b})}{[\vec{a}\ \vec{b}\ \vec{c}]}$$

$$[\because \vec{b}.\vec{b} \times \vec{c} = \vec{c}.\vec{c} \times \vec{a} = \vec{a}.\vec{a} \times \vec{b} = 0]$$

$$= \frac{\vec{a} \vec{b} \vec{c}}{\vec{a} \vec{b} \vec{c}} + \frac{\vec{a} \vec{b} \vec{c}}{\vec{a} \vec{b} \vec{c}} + \frac{\vec{a} \vec{b} \vec{c}}{\vec{a} \vec{b} \vec{c}} + \frac{\vec{a} \vec{b} \vec{c}}{\vec{a} \vec{b} \vec{c}} = 1 + 1 + 1 = 3$$

24. (d) Volume of parallelopiped = $\overrightarrow{OA} \overrightarrow{OB} \overrightarrow{OC}$

$$= \begin{vmatrix} 2 & -2 & 0 \\ 1 & 1 & -1 \\ 3 & 0 & -1 \end{vmatrix} = 2(-1) + 2(-1+3) = 2$$

25. (d) $|(\vec{a} \times \vec{b}) \cdot \vec{c}| = |\vec{a}| |\vec{b}| |\vec{c}|$

$$\Rightarrow |\hat{a}||\hat{b}||\sin\theta \hat{n}.\vec{c}| = |\hat{a}||\hat{b}||\hat{c}|$$

where θ is angle between \vec{a} and \vec{b} .

$$\Rightarrow$$
 $|\sin \theta \hat{n} \cdot \vec{c}| = |\vec{c}| \Rightarrow |\hat{c}| |\sin \theta \cos \alpha| = |\hat{c}|$
where α is angle between \vec{c} and \hat{n} .

$$\Rightarrow |\sin \theta| = 1 \Rightarrow \theta = \frac{\pi}{2} \Rightarrow \vec{a} \cdot \vec{b} = 0$$

and
$$\left|\cos\alpha\right| = 1 \Rightarrow \alpha = 0 \Rightarrow \vec{c} \parallel \vec{n} \Rightarrow \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$$

$$\Rightarrow \quad \vec{a}.\vec{b} = \vec{b}.\vec{c} = \vec{c}.\vec{a} = 0$$

26. (a) $\overrightarrow{A}.(\overrightarrow{B}+\overrightarrow{C})\times(\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C})$

$$= \overrightarrow{A} \cdot [\overrightarrow{B} \times \overrightarrow{A} + \overrightarrow{B} \times \overrightarrow{B} + \overrightarrow{B} \times \overrightarrow{C} + \overrightarrow{C} \times \overrightarrow{A} + \overrightarrow{C} \times \overrightarrow{B} + \overrightarrow{C} \times \overrightarrow{C}]$$

 $(: \vec{A} \times \vec{A} = 0)$

$$= \vec{A} \cdot \left(\vec{B} \times \vec{A} + \vec{B} \times \vec{C} + \vec{C} \times \vec{A} + \vec{C} \times \vec{B} \right)$$

$$= \overrightarrow{A}.\overrightarrow{B} \times \overrightarrow{A} + \overrightarrow{A}.\overrightarrow{B} \times \overrightarrow{C} + \overrightarrow{A}.\overrightarrow{C} \times \overrightarrow{A} + \overrightarrow{A}.\overrightarrow{C} \times \overrightarrow{B}$$

$$(: \vec{A} \cdot (\vec{B} \times \vec{A}) = 0)$$

$$= 0 + [\overrightarrow{ABC}] + 0 + [\overrightarrow{ACB}]$$

$$= [\overrightarrow{ABC}] - [\overrightarrow{ABC}] \qquad (\because [\overrightarrow{abc}] = -[\overrightarrow{acb}])$$

27. (7) Given that

$$|\vec{u}| = 1; |\vec{v}| = 1; \vec{u}.\vec{v} \neq 0; \vec{u}.\vec{w} = 1; \vec{v}.\vec{w} = 1$$

and
$$\vec{w} \cdot \vec{w} = |\vec{w}|^2 = 4 \implies |\vec{w}| = 2$$

Volume of parallelopiped = $[\vec{u} \ \vec{v} \ \vec{w}] = \sqrt{2}$

$$\Rightarrow \begin{bmatrix} \vec{u} & \vec{v} & \vec{w} \end{bmatrix}^2 = \begin{vmatrix} \vec{u}.\vec{u} & \vec{u}.\vec{v} & \vec{u}.\vec{w} \\ \vec{v}.\vec{u} & \vec{v}.\vec{v} & \vec{v}.\vec{w} \\ \vec{w}.\vec{u} & \vec{w}.\vec{v} & \vec{w}.\vec{w} \end{vmatrix} = 2$$

$$\Rightarrow \begin{vmatrix} 1 & \vec{u}.\vec{v} & 1 \\ \vec{u}.\vec{v} & 1 & 1 \\ 1 & 1 & 4 \end{vmatrix} = 2 \Rightarrow \vec{u}.\vec{v} = \frac{1}{2}$$

Now,
$$|3\vec{u} + 5\vec{v}|^2 = (3\vec{u} + 5\vec{v})(3\vec{u} + 5\vec{v})$$

= $9 |\vec{u}|^2 + 25 |\vec{v}|^2 + 30\vec{u}.\vec{v}$
= $9 + 25 + 15 = 49$

$$|3\vec{u} + 5\vec{v}| = \sqrt{49} = 7$$

28. (3) Given that $|\vec{a}| = |\vec{b}| = 1$, $\vec{a} \cdot \vec{b} = 0$ and $|\vec{c}| = 2$

 \vec{c} makes angle α with both \vec{a} and \vec{b}

Also,
$$\vec{c} = x \vec{a} + y \vec{b} + \vec{a} \times \vec{b}$$

$$\vec{c}.\vec{a} = |\vec{c}| |\vec{a}| \cos \alpha = 2 \cos \alpha \Rightarrow x = 2 \cos \alpha$$

$$\vec{c}.\vec{b} = 2\cos\alpha \implies y = 2\cos\alpha$$

$$\left|\vec{c}\right|^2 = \vec{c} \cdot \vec{c} = \left|(2\cos\alpha)\vec{a} + (2\cos\alpha)\vec{b} + \vec{a} \times \vec{b}\right|^2$$

$$\Rightarrow (2)^2 = 4\cos^2\alpha + 4\cos^2\alpha + |\vec{a} \times \vec{b}|^2$$

$$\Rightarrow 4 = 8\cos^2\alpha + 1 \quad \left(\because |\vec{a} \times \vec{b}| = 1 \times 1 \times \sin 90^\circ = 1\right)$$

$$\Rightarrow$$
 8 cos² α = 3

29. (9)
$$\vec{s} = 4\vec{p} + 3\vec{q} + 5\vec{r}$$
 ...(i)

 $\vec{s} = x(-\vec{p} + \vec{q} + \vec{r}) + y(\vec{p} - \vec{q} + \vec{r}) + z(-\vec{p} - \vec{q} + \vec{r})$...(ii)

comparing (i) and (ii) we get

$$-x+y-z=4$$

$$x+y+z=5$$

Solving above equations, we get
$$x = 4$$
, $y = \frac{9}{2}$, $z = \frac{-7}{2}$

$$\therefore 2x + y + z = 9$$

30. (4)
$$\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{c} = \overrightarrow{c} \cdot \overrightarrow{a} = \cos \frac{\pi}{3} = \frac{1}{2}$$

Given
$$p \stackrel{\rightarrow}{a+q} \stackrel{\rightarrow}{b+r} \stackrel{\rightarrow}{c} = \stackrel{\rightarrow}{a \times b} \stackrel{\rightarrow}{b \times c}$$

Taking its dot product with \overrightarrow{a} \overrightarrow{b} \overrightarrow{c} , we get

Taking its dot product with
$$a, b, c$$
, we ge

$$\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \\ \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} = p |\overrightarrow{a}|^2 + q (\overrightarrow{b} \cdot \overrightarrow{a}) + r (\overrightarrow{c} \cdot \overrightarrow{a})$$

$$= p + \frac{1}{2}q + \frac{1}{2}r \qquad ...(i)$$

Given that
$$\frac{1}{2}p + q + \frac{1}{2}r = 0$$
 ...(ii)

and
$$\frac{1}{2}p + \frac{1}{2}q + r = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$$
 ...(iii)
From (i) and (iii), $p = r$ Using (ii) $q = -p$

$$\therefore \frac{p^2 + 2q^2 + r^2}{a^2} = \frac{p^2 + 2p^2 + p^2}{a^2} = 4$$

31. (9)
$$\vec{r} \times \vec{b} = \vec{c} \times \vec{b} \Rightarrow \vec{r} \times \vec{b} - \vec{c} \times \vec{b} = \vec{0}$$

$$\Rightarrow (\vec{r} - \vec{c}) \times \vec{b} = \vec{0} \Rightarrow \vec{r} - \vec{c} \parallel \vec{b}$$

$$\text{Let } \vec{r} - \vec{c} = \lambda \vec{b} \Rightarrow \vec{r} = \vec{c} + \lambda \vec{b}$$

$$\Rightarrow \vec{r} = \hat{i} + 2\hat{j} + 3\hat{k} - \lambda\hat{i} + \lambda\hat{j}$$

=
$$(1-\lambda)i + (2+\lambda)\hat{j} + 3\hat{k}$$

 $\therefore \vec{r} \cdot \vec{a} = 0 \Rightarrow -1 + \lambda - 3 = 0 \Rightarrow \lambda = 4$

$$\vec{r} = -3\hat{i} + 6\hat{j} + 3\hat{k}$$

Now,
$$\vec{r} \cdot \vec{b} = 3 + 6 = 9$$

32. (5) We have
$$|\vec{a}| = 1 |\vec{b}| = 1$$
 and $\vec{a} \cdot \vec{b} = 0$

Now,
$$(2\vec{a} + \vec{b}) \cdot [(\vec{a} \times \vec{b}) \times (\vec{a} - 2\vec{b})]$$

$$= \left(2\vec{a} + \vec{b} \right) \cdot \left[\left(\vec{a} \cdot \vec{a} \right) \vec{b} - \left(\vec{a} \cdot \vec{b} \right) \vec{a} - 2 \left(\vec{b} \cdot \vec{a} \right) \vec{b} + 2 \left(\vec{b} \cdot \vec{b} \right) \vec{a} \right]$$

$$= \left(2\vec{a} + \vec{b}\right) \cdot \left[\left(\vec{a}\right)^2 \vec{b} + 2\left(\vec{b}\right)^2 \vec{a} \right]$$

$$= (2\vec{a} + \vec{b}) \cdot (2\vec{a} + \vec{b}) = 4|\vec{a}|^2 + |\vec{b}|^2 \quad (\because \vec{a} \cdot \vec{b} = 0)$$

= 4 + 1 = 5.

33. (18) Given that $\vec{a} = 2\hat{i} + \hat{j} - \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} + \hat{k}$

$$\Rightarrow$$
 $\vec{a} + \vec{b} = 3\hat{i} + 3\hat{i}$

Given that projection of \vec{c} on $\vec{a} + \vec{b} = 3\sqrt{2}$

$$\Rightarrow \frac{\vec{c}.(\vec{a}+\vec{b})}{|\vec{a}+\vec{b}|} = 3\sqrt{2} \Rightarrow \frac{3(2\alpha+\beta)+3(\alpha+2\beta)}{3\sqrt{2}} = 3\sqrt{2}$$

$$\Rightarrow \alpha + \beta = 2$$
(i)

$$\vec{c} = \alpha \vec{a} + \beta \vec{b} = (2\alpha + \beta)\hat{i} + (\alpha + 2\beta)\hat{i} + (-\alpha + \beta)\hat{k}$$

$$\vec{c} = (\alpha + 2)\hat{i} + (4 - \alpha)\hat{j} + (2 - 2\alpha)\hat{k}$$
 Using eqⁿ (i)

Now \vec{c} is in the plane of \vec{a} and \vec{b} (: $\vec{c} = \alpha \vec{a} + \beta \vec{b}$)

$$\therefore (\vec{a} \times \vec{b}) \cdot \vec{c} = 0$$

Hence
$$(\vec{c} - (\vec{a} \times \vec{b})) \cdot \vec{c} = \vec{c} \cdot \vec{c}$$

$$= (\alpha + 2)^{2} + (4 - \alpha)^{2} + (2 - 2\alpha)^{2} = 6(\alpha^{2} - 2\alpha + 4)$$
$$= 6((\alpha - 1)^{2} + 3)$$

which has minimum value as 18 when $\alpha = 1$

34. Given that $q = \text{area of parallelogram with } \overline{OA}$ and \overline{OC} as adjacent sides $= |\overrightarrow{OA} \times \overrightarrow{OC}| = |\overrightarrow{a} \times \overrightarrow{b}|$

and p = area of quadrilateral OABC $=\frac{1}{2}\left|\overrightarrow{OA}\times\overrightarrow{OB}\right|+\frac{1}{2}\left|\overrightarrow{OB}\times\overrightarrow{OC}\right|$

$$\begin{aligned} &= \frac{1}{2} \left| \vec{a} \times \left(\overline{10} \vec{a} + \overline{2} \vec{b} \right) \right| + \frac{1}{2} \left| \left(\overline{10} \vec{a} + \overline{2} \vec{b} \right) \times \vec{b} \right| \\ &= \left| \vec{a} \times \vec{b} \right| + 5 \left| \vec{a} \times \vec{b} \right| = 6 \left| \vec{a} \times \vec{b} \right| \qquad \therefore \quad p = 6q \implies k = 6 \end{aligned}$$

35. Let \vec{b} and \vec{c} be unit vector along \hat{i} and \hat{j} respectively i.e. $\vec{b} = \hat{i}$ and $\vec{c} = \hat{j}$ then $\vec{b} \times \vec{c} = \hat{k}$ Let $\vec{a} = x\hat{i} + v\hat{i} + z\hat{k}$

$$\Rightarrow \vec{a} \cdot \vec{b} = x, \vec{a} \cdot \vec{c} = y \text{ and } \vec{a} \cdot (\vec{b} \times \vec{c}) = k$$
. Then,

$$(\vec{a}.\vec{b})\vec{b} + (\vec{a}.\vec{c})\vec{c} + \frac{\vec{a}.(\vec{b} \times \vec{c})}{|\vec{b} \times \vec{c}|}(\vec{b} \times \vec{c}) = x\hat{i} + y\hat{j} + z\hat{k} = \hat{a}$$

36. Let $\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$ be a unit vector, coplanar with $\hat{i} + \hat{j} + 2\hat{k}$ and $\hat{i} + 2\hat{j} + \hat{k}$.

$$\Rightarrow \begin{vmatrix} x & y & z \\ 1 & 1 & 2 \\ 1 & 2 & 1 \end{vmatrix} = 0 \Rightarrow -3x + y + z = 0 \qquad \dots (i)$$

also \vec{a} is perpendicular to $\hat{i} + \hat{j} + \hat{k}$

$$\Rightarrow \left(x\hat{i} + y\hat{j} + z\hat{k}\right) \cdot \left(\hat{i} + \hat{j} + \hat{k}\right) = 0$$

$$\Rightarrow x + y + z = 0$$

Solving the above eqns., we get

$$\frac{x}{0} = \frac{y}{4} = \frac{z}{-4}$$
 or $\frac{x}{0} = \frac{y}{1} = \frac{z}{-1} = \lambda (say)$

$$\Rightarrow x = 0, y = \lambda, z = -\lambda \Rightarrow \vec{a} = \lambda \hat{j} - \lambda \hat{k} = 0$$

Given that \vec{a} is a unit vector, therefore

$$0 + \lambda^2 + \lambda^2 = 1 \Rightarrow \lambda^2 = \frac{1}{2} \Rightarrow \lambda = \pm \frac{1}{\sqrt{2}}$$

$$\therefore$$
 The required vector is $\frac{\hat{j} - \hat{k}}{\sqrt{2}}$ or $\frac{-\hat{j} + \hat{k}}{\sqrt{2}}$

37. Given that the vectors $\vec{a} = a\hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + b\hat{j} + \hat{k}$ and $\vec{c} = \hat{i} + \hat{j} + c\hat{k}$ where $a \neq b \neq c \neq 1$ are coplanar

$$\therefore \begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = 0 \Rightarrow \begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{vmatrix} = 0$$

Applying $C_1 = C_1 - C_2$, $C_2 = C_2 - C_3$

$$\begin{vmatrix} a-1 & 0 & 1 \\ 1-b & b-1 & 1 \\ 0 & 1-c & c \end{vmatrix} = 0$$

Taking (1-a), (1-b), (1-c) common from R_1 , R_2 and R_3 respectively, we get

$$\Rightarrow (1-a)(1-b)(1-c)\begin{vmatrix} -1 & 0 & \frac{1}{1-a} \\ 1 & -1 & \frac{1}{1-b} \\ 0 & 1 & \frac{c}{1-c} \end{vmatrix} = 0$$
Applying $R_2 \to R_2 + R_1$

$$\begin{bmatrix} -1 & 0 & \frac{1}{1-a} \\ \end{bmatrix}$$

$$\Rightarrow (1-a)(1-b)(1-c)\begin{bmatrix} -1 & 0 & \frac{1}{1-a} \\ 0 & -1 & \frac{1}{1-b} + \frac{1}{1-a} \\ 0 & 1 & \frac{c}{1-c} \end{bmatrix} = 0$$

$$\Rightarrow (1-a)(1-b)(1-c)(-1)\left[-\frac{c}{1-c} - \frac{1}{1-b} - \frac{1}{1-a}\right] = 0$$

$$\Rightarrow (1-a)(1-b)(1-c)\left[\frac{1}{1-a} + \frac{1}{1-b} + \frac{c}{1-c}\right] = 0$$

$$\Rightarrow (1-a)(1-b)(1-c)\left[\frac{1}{1-a} + \frac{1}{1-b} - \frac{(1-c)-1}{1-c}\right] = 0$$

$$\Rightarrow (1-a)(1-b)(1-c)\left[\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} - 1\right] = 0$$

$$\therefore \frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} - 1 = 0 \implies \frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 1$$

38. Position vetor of \vec{A} and \vec{C} are $\vec{A} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{C} = \hat{j} - \hat{k}$ respectively

Let
$$\vec{B} = x\hat{i} + y\hat{j} + z\hat{k}$$

$$ATQ, \quad \overrightarrow{A} \times \overrightarrow{B} = \overrightarrow{C} \Rightarrow \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ x & y & z \end{vmatrix} = \hat{j} - \hat{k}$$

$$\Rightarrow (z-y) \hat{i} - (z-x)\hat{j} + (y-x) \hat{k} = \hat{j} - \hat{k}$$

$$z-y=0. \Rightarrow y=z \qquad ...(i)$$

$$\Rightarrow x-z=1 \Rightarrow x=z=1 \qquad ...(ii)$$
and $y-x=-1$

Also, $\vec{A} \cdot \vec{B} = 3 \Rightarrow x + y + z = 3$ From eqs. (i), (ii) and (iii), we get ...(iii)

$$\therefore \vec{B} = \frac{5}{3}\hat{i} + \frac{2}{3}\hat{j} + \frac{2}{3}\hat{k}$$

39. Since $\vec{A}, \vec{B}, \vec{C}$ are three non-coplanar vectors, therefore, $ABC \neq 0$

$$\therefore \frac{\vec{A}.(\vec{B} \times \vec{C})}{(\vec{C} \times \vec{A}).\vec{B}} + \frac{\vec{B}.(\vec{A} \times \vec{C})}{(\vec{C} \times \vec{A}).\vec{B}} = \frac{\vec{A} \vec{B} \vec{C}}{\vec{C} \vec{A} \vec{B}} + \frac{\vec{B} \vec{A} \vec{C}}{\vec{C} \vec{A} \vec{B}}$$

$$= \frac{\left[\overrightarrow{A}\overrightarrow{B}\overrightarrow{C}\right]}{\left[\overrightarrow{A}\overrightarrow{B}\overrightarrow{C}\right]} + \frac{-\left[\overrightarrow{A}\overrightarrow{B}\overrightarrow{C}\right]}{\left[\overrightarrow{A}\overrightarrow{B}\overrightarrow{C}\right]} = 0$$

40.
$$\begin{vmatrix} a & a^2 & 1+a^3 \\ b & b^2 & 1+b^3 \\ c & c^2 & 1+c^3 \end{vmatrix} = 0$$
 (Given)
$$\Rightarrow \begin{vmatrix} a & a^2 & 1 \\ b & b^2 & 1 \end{vmatrix} + abc \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \end{vmatrix} = 0$$

Apply $C_2 \leftrightarrow C_3$ and then $C_1 \leftrightarrow C_2$ in first determinant, we get

$$\Rightarrow \begin{vmatrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{vmatrix} + abc \begin{vmatrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{vmatrix} = 0$$

$$\Rightarrow (1 + abc) \begin{vmatrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{vmatrix} = 0$$

But given that the vectors $\overrightarrow{A}, \overrightarrow{B}, \overrightarrow{C}$ are non-coplanar

$$\therefore 1 + abc = 0 \Rightarrow \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} \neq 0$$

$$\Rightarrow abc = -1$$

41.
$$\overrightarrow{BA} = -\hat{i} - 2\hat{j} + 3\hat{k}$$
, $\overrightarrow{BC} = \hat{i} - 2\hat{j} + 3\hat{k}$

$$\therefore \text{ Area of } \Delta ABC = \frac{1}{2} \left| \overrightarrow{BA} \times \overrightarrow{BC} \right|$$

$$\Delta = \frac{1}{2} \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & -2 & 3 \\ 1 & -2 & 3 \end{vmatrix} = \frac{1}{2} |6\hat{j} + 4\hat{k}| = |3\hat{j} + 2\hat{k}| = \sqrt{9 + 4} = \sqrt{13}$$

42. False: L.H.S. =
$$(\vec{a} - \vec{b}).(\vec{b} - \vec{c}) \times (\vec{c} - \vec{a})$$

= $(\vec{a} - \vec{b}).(\vec{b} \times \vec{c} - \vec{b} \times \vec{a} - \vec{c} \times \vec{c} + \vec{c} \times \vec{a})$
= $(\vec{a} - \vec{b}).(\vec{b} \times \vec{c} + \vec{a} \times \vec{b} + \vec{c} \times \vec{a})$ [$\because \vec{c} \times \vec{c} = 0$]
= $\vec{a}.(\vec{b} \times \vec{c}) + \vec{a}.(\vec{a} \times \vec{b}) + \vec{a}.(\vec{c} \times \vec{a})$
 $-\vec{b}.(\vec{b} \times \vec{c}) - \vec{b}.(\vec{a} \times \vec{b}) - \vec{b}.(\vec{c} \times \vec{a})$
= $[\vec{a} \, \vec{b} \, \vec{c}] - [\vec{a} \, \vec{b} \, \vec{c}] = 0 \neq \text{R.H.S.}$ [$\because [\vec{a} \, \vec{a} \, \vec{b}] = 0$]
 \therefore The given statement is false.

43. True:
$$\overrightarrow{X}.\overrightarrow{A} = 0 \Rightarrow \text{ either } \overrightarrow{A} = 0 \text{ or } \overrightarrow{X} \perp \overrightarrow{A}$$
 ...(i) $\overrightarrow{X}.\overrightarrow{B} = 0 \Rightarrow \text{ either } \overrightarrow{B} = 0 \text{ or } \overrightarrow{X} \perp \overrightarrow{B}$...(ii)

$$\overrightarrow{X}.\overrightarrow{B} = 0 \Rightarrow \text{ either } B = 0 \text{ or } \overrightarrow{X} \perp B$$
 ...(ii)
 $\overrightarrow{X}.\overrightarrow{C} = 0 \Rightarrow \text{ either } \overrightarrow{C} = 0 \text{ or } \overrightarrow{X} \perp \overrightarrow{C}$...(iii)
From (i), (ii) and (iii)
if \overrightarrow{A} or \overrightarrow{B} or $\overrightarrow{C} = 0 \Rightarrow [\overrightarrow{A}\overrightarrow{B}\overrightarrow{C}] = 0$

Otherwise if
$$\overrightarrow{X} \perp \overrightarrow{A}, \overrightarrow{X} \perp \overrightarrow{B}, \overrightarrow{X} \perp \overrightarrow{C}$$
 then $\overrightarrow{A}, \overrightarrow{B}, \overrightarrow{C}$ are

coplanar
$$\Rightarrow \left[\overrightarrow{A} \overrightarrow{B} \overrightarrow{C} \right] = 0$$

:. Given statement is true.

44. True: Given that
$$\vec{A} \cdot \vec{B} = \vec{A} \cdot \vec{C} = 0$$

 \vec{A} is perpendicular to both \vec{B} and \vec{C} .

$$\Rightarrow \vec{B} \times \vec{C} = \lambda \vec{A}$$
 where λ is any scalar.

$$\Rightarrow |\vec{B} \times \vec{C}| = |\lambda \vec{A}| \Rightarrow \sin \pi/6 = \pm \lambda \qquad (\because |B| = |C| = |A| = 1)$$

 $(:: \pi/6 \text{ is the angle between } \vec{B} \& \vec{C})$

$$\Rightarrow \lambda = \pm \frac{1}{2} \Rightarrow \overrightarrow{B} \times \overrightarrow{C} = \pm \frac{1}{2} \overrightarrow{A} \Rightarrow \overrightarrow{A} = \pm 2 \left(\overrightarrow{B} \times \overrightarrow{C} \right)$$

.. Given statement is true.

45. (b, c, d)
$$\begin{bmatrix} 0 & -C_3 & C_2 \\ C_3 & 0 & -C_1 \\ -C_2 & C_1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} 3 - C_1 \\ 1 - C_2 \\ -1 - C_3 \end{bmatrix}$$
$$\Rightarrow -b_2 C_3 + b_3 C_2 = 3 - C_1$$
$$\Rightarrow C_3 - C_1 b_3 = 1 - C_2$$
$$\Rightarrow -C_2 + b_2 C_1 = -1 - C_3$$
......(ii)

Applying (i) $\hat{i} - (2)\hat{j} + (3)\hat{k}$, we get

$$i(b_2 c_3 - b_3 c_2) - \hat{j} (c_3 - b_3 c_1) + \hat{k} (c_2 - b_2 c_1)$$

$$= c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k} - 3\hat{i} - \hat{j} + \hat{k} \Rightarrow \vec{b} \times \vec{c} = \vec{c} - \vec{a}$$

$$\Rightarrow \vec{b} \cdot (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{c} - \vec{a}) \Rightarrow 0 = \vec{b} \cdot \vec{c} - \vec{b} \cdot \vec{a}$$

$$\Rightarrow \vec{b} \cdot \vec{c} = 0 \quad [\because \vec{a} \cdot \vec{b} = 0]$$

$$\because \vec{c} \cdot (\vec{b} \times \vec{c}) = \vec{c} \cdot (\vec{c} - \vec{a})$$

$$\Rightarrow 0 = |\vec{c}|^2 - \vec{c}.\vec{a} \Rightarrow \vec{c}.\vec{a} = |\vec{c}|^2$$

$$(\vec{b} \times \vec{c})^2 = (\vec{c} - \vec{a})^2$$

$$|\vec{b}|^2 |\vec{c}|^2 = |\vec{c}|^2 + |\vec{a}|^2 - 2\vec{c}.\vec{a}[::\vec{b}\perp\vec{c}]$$

$$|\vec{b}|^2 |\vec{c}|^2 = |\vec{c}|^2 + 11 - 2[\vec{c}]^2$$

$$\Rightarrow |\vec{c}|^2 = \frac{11}{|\vec{b}|^2 + 1} \Rightarrow |\vec{c}| \le \sqrt{11}$$

Given that
$$\vec{a} \cdot \vec{b} = 0 \Rightarrow b_2 - b_3 + 3 = 0 \Rightarrow b_3 - b_2 = 3$$

Also $b_2 \cdot b_3 > 0$

Now,
$$|\vec{b}|^2 = 1 + b_2^2 + b_3^2$$

= 1 + (b_3 - b_2)^2 + 2b_2b_3
= 10 + 2 b_2b_3
 $\Rightarrow |\vec{b}|^2 > 10 \Rightarrow |\vec{b}| > \sqrt{10}$

46. (a,b,c)
$$\overrightarrow{OB} \times \overrightarrow{OC} = \frac{1}{2} \overrightarrow{OB} \times (\overrightarrow{OB} - \lambda \overrightarrow{OA})$$

$$= \frac{\lambda}{2} (\overrightarrow{OA} \times \overrightarrow{OB}) \qquad \dots (i)$$

Since, $\overrightarrow{OA} \cdot \overrightarrow{OB} = 0$ therfore $\overrightarrow{OA} \perp^r \overrightarrow{OB}$

Since,
$$\overrightarrow{OA} \cdot \overrightarrow{OB} = 0$$
 therefore $\overrightarrow{OA} \perp \overrightarrow{OB}$

$$\therefore \quad \left| \overrightarrow{OB} \times \overrightarrow{OC} \right| = \left| \frac{\lambda}{2} (\overrightarrow{OA} \times \overrightarrow{OB}) \right| \qquad \text{[from (i)]}$$

$$= \frac{|\lambda|}{2} |\overrightarrow{OA}| |\overrightarrow{OB}| \sin \frac{\pi}{2}$$

$$\Rightarrow \quad \frac{9}{2} = \frac{|\lambda|}{2} \times 3 \times 3 \Rightarrow \lambda = 1 \text{ (given } \lambda > 0)$$
So, $\overrightarrow{OC} = \frac{\overrightarrow{OB} - \overrightarrow{OA}}{2} = \frac{1}{2} \left(-\hat{i} - 4\hat{j} + \hat{k} \right)$

(a) Projection \overrightarrow{OC} on \overrightarrow{OA}

$$= \frac{\overrightarrow{OC} \cdot \overrightarrow{OA}}{|\overrightarrow{OA}|} = \frac{\frac{1}{2}(-2-8+1)}{3} = -\frac{3}{2}$$

- (b) Area of $\triangle OAB = \frac{1}{2} |\overrightarrow{OA} \times \overrightarrow{OB}| = \frac{9}{2}$
- (c) Area of Δ ABC

$$=\frac{1}{2}\left|\overrightarrow{AB}\times\overrightarrow{AC}\right| = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & -4 & 1 \\ \frac{-5}{2} & -4 & -\frac{1}{2} \end{vmatrix}$$

 $= \frac{1}{2} \left| 6\hat{i} - 3\hat{j} - 6\hat{k} \right| = \frac{9}{2}$

(d) Let acute angle between diagonals is θ then $\cos \theta = \frac{\left(\overline{OA} + \overline{OC}\right) \cdot \left(\overline{OA} - \overline{OC}\right)}{\left|\overline{OA} + \overline{OC}\right| \left|\overline{OA} - \overline{OC}\right|} = \frac{18}{3\sqrt{2}\sqrt{90}}$ $\therefore \quad \theta \neq \frac{\pi}{2}$

47. **(b, c, d)**
$$\begin{bmatrix} 0 & -C_3 & C_2 \\ C_3 & 0 & -C_1 \\ -C_2 & C_1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} 3 - C_1 \\ 1 - C_2 \\ -1 - C_3 \end{bmatrix}$$

$$\Rightarrow -b_2C_3 + b_3C_2 = 3 - C_1$$

$$\Rightarrow C_3 - C_1b_3 = 1 - C_2$$

$$\Rightarrow -C_2 + b_2C_1 = -1 - C_3$$
Applying (i) $\hat{i} - (2)\hat{j} + (3)\hat{k}$, we get
$$i(b_2c_3 - b_3c_2) - \hat{j}(c_3 - b_3c_1) + \hat{k}(c_2 - b_2c_1)$$

$$= c_1\hat{i} + c_2\hat{j} + c_3\hat{k} - 3\hat{i} - \hat{j} + \hat{k} \Rightarrow \vec{b} \times \vec{c} = \vec{c} - \vec{a}$$

$$\Rightarrow \vec{b}.(\vec{b} \times \vec{c}) = \vec{b}.(\vec{c} - \vec{a}) \Rightarrow 0 = \vec{b}.\vec{c} - \vec{b}.\vec{a}$$

$$\Rightarrow \vec{b}.\vec{c} = 0 \quad [\because \vec{a}\vec{b} = 0]$$

 $\vec{c}.(\vec{b}\times\vec{c}) = \vec{c}.(\vec{c}-\vec{a}) \implies 0 = |\vec{c}|^2 - \vec{c}.\vec{a} \implies \vec{c}.\vec{a} = |\vec{c}|^2$

$$(\vec{b} \times \vec{c})^2 = (\vec{c} - \vec{a})^2$$

$$|\vec{b}|^2 |\vec{c}|^2 = |\vec{c}|^2 + |\vec{a}|^2 - 2\vec{c} \cdot \vec{a} [\because \vec{b} \perp \vec{c}]$$

$$|\vec{b}|^2 |\vec{c}|^2 = |\vec{c}|^2 + 11 - 2[\vec{c}]^2$$

$$\Rightarrow |\vec{c}|^2 = \frac{11}{|\vec{b}|^2 + 1} \Rightarrow |\vec{c}| \le \sqrt{11}$$

Given that $\vec{a}.\vec{b} = 0 \implies b_2 - b_3 + 3 = 0 \implies b_3 - b_2 = 3$ Also $b_2.b_3 > 0$

Now,
$$|\vec{b}|^2 = 1 + b_2^2 + b_3^2$$

= 1 + (b₃ - b₂)² + 2b₂b₃
= 10 + 2 b₂b₃

48. $\begin{vmatrix} \vec{\mathbf{a}} | \vec{b} |^2 > 10 \Rightarrow |\vec{b}| > \sqrt{10} \\ \text{From given information} \\ \vec{a} + \vec{b} + \vec{c} = \vec{o} \end{vmatrix}$

$$\Rightarrow |\vec{b} + \vec{c}|^2 = |-\vec{a}|^2 \Rightarrow |\vec{b}|^2 + |\vec{c}|^2 + 2\vec{b} \cdot \vec{c} = |\vec{a}|^2$$

$$\Rightarrow 48 + \left| \vec{c} \right|^2 + 48 = 144 \Rightarrow \left| \vec{c} \right|^2 = 48 \Rightarrow \left| \vec{c} \right| = 4\sqrt{3}$$

$$\therefore \frac{|\vec{c}|^2}{2} - |\vec{a}| = \frac{48}{2} - 12 = 12$$

: (a) is correct

$$\frac{\left|\vec{c}\right|^2}{2} + \left|\vec{a}\right| = 24 \neq 30$$

: (b) is not correct

Also
$$|\vec{b}| = |\vec{c}| \Rightarrow \angle Q = \angle R$$

and
$$\cos(180 - P) = \frac{\vec{b} \cdot \vec{c}}{|\vec{b}||\vec{c}|} = \frac{1}{2}$$

$$\Rightarrow \angle P = 120^{\circ} : \angle Q = \angle R = 30^{\circ}$$

And
$$\vec{a} \cdot \vec{b} = 12 \times 4\sqrt{3} \times \cos 150 = -72$$

: (d) is correct

Now,
$$\vec{a} \times (\vec{a} + \vec{b} + \vec{c}) = \vec{0} \Rightarrow \vec{a} \times \vec{b} = \vec{c} \times \vec{a}$$

$$|\vec{a} \times \vec{b} + \vec{c} \times \vec{a}| = 2|\vec{a} \times \vec{b}| = 2 \times 12 \times 4\sqrt{3} \times \sin 150 = 48\sqrt{3}$$

: (c) is correct.

49. (a, b, c) Given that $|\vec{x}| = |\vec{y}| = |\vec{z}| = \sqrt{2}$

and angle between each pair is $\frac{\pi}{3}$.

Since \vec{a} is perpendicular to both \vec{x} and $\vec{y} \times \vec{z}$.

 $\therefore \vec{a}.\vec{c} \neq 0$

$$[\because \vec{a} \text{ and } \vec{b} \text{ are unit vectors.}]$$

$$|\vec{v}| = \sin \theta \qquad ...(i)$$

$$|\vec{v}| = \vec{a} - (\vec{a} \cdot \vec{b}) \vec{b} = \vec{a} - \vec{b} \cos \theta$$

B245

Now,
$$\vec{u} = \vec{a} - (\vec{a} \cdot \vec{b})\vec{b} = \vec{a} - \vec{b}\cos\theta$$

(where
$$\vec{a} \cdot \vec{b} = \cos \theta$$
)
 $|\vec{u}|^2 = |\vec{a} - \vec{b} \cos \theta|^2 = 1 + \cos^2 \theta - 2 \cos \theta \cdot \cos \theta$

=
$$1 - \cos^2 \theta = \sin^2 \theta = |v|^2 \implies |\vec{u}| = |\vec{v}| \text{ (from (i))}$$

Also, $\vec{u}.\vec{b} = \vec{a}.\vec{b} - (\vec{a}.\vec{b}) (\vec{b}.\vec{b}) = \vec{a}.\vec{b} - \vec{a}.\vec{b} = 0$,

$$|\vec{u}.\vec{b}| = 0$$

So,
$$|\vec{v}| = |\vec{u}| + |\vec{u}.\vec{b}|$$
 is also correct

Similarly,
$$|\vec{u}| + |\vec{u}.\vec{a}| \neq |\vec{v}|$$

and
$$|\vec{u}| + |\vec{u}| |\vec{a} + \vec{b}| \neq |\vec{v}|$$

52. (a, c) We know that dot product of two vectors gives a scalar quantity.

53. (c) We know that
$$[\overrightarrow{u}\overrightarrow{v}\overrightarrow{w}] = [v wu] = [\overrightarrow{w}\overrightarrow{u}\overrightarrow{v}]$$

but $[\overrightarrow{v}\overrightarrow{u}\overrightarrow{w}] = -[\overrightarrow{u}\overrightarrow{v}\overrightarrow{w}]$

54. (b) Vector perpendicular to vector a and b is given by $\hat{n} = \lambda (\vec{a} \times \vec{b})$

$$\therefore \hat{n} = \frac{\lambda (\vec{a} \times \vec{b})}{|\lambda| |\vec{a} \times \vec{b}|} = \pm \frac{(\vec{a} \times \vec{b})}{|\vec{a} \times \vec{b}|}$$

We have two possible values of \hat{n}

55. (c) Since 'c' is unit vector perpendicular to both the vectors \vec{a} and \vec{b} . So, $\vec{c} \parallel \vec{a} \times \vec{b}$

Then
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}^2 = [\vec{a}\vec{b}\vec{c}]^2 \cdot = (\vec{a} \times \vec{b} \cdot \vec{c})^2$$
$$= (|\vec{a} \times \vec{b}| \cdot 1\cos 0^\circ)^2$$
$$= (|\vec{a} \times \vec{b}|)^2 = (|\vec{a}||\vec{b}| \cdot \sin \frac{\pi}{6})^2$$

[: angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$]

$$= \left(\frac{1}{2}\sqrt{a_1^2 + a_2^2 + a_3^2}\sqrt{b_1^2 + b_2^2 + b_3^2}\right)^2$$
$$= \frac{1}{4}\left(a_1^2 + a_2^2 + a_3^2\right)\left(b_1^2 + b_2^2 + b_3^2\right)$$

56. (a)
$$P \to 4$$
: $y = \cos(3\cos^{-1}x)$
 $y = \cos\left[\cos^{-1}(4x^3 - 3x)\right]$
 $y = 4x^3 - 3x$
 $\Rightarrow \frac{dy}{dx} = 12x^2 - 3$ and $\frac{d^2y}{dx^2} = 24x$

 $\therefore a = \lambda \left[\overrightarrow{x} \times \left(\overrightarrow{y} \times \overrightarrow{z} \right) \right] = \lambda \left[\left(\overrightarrow{x} \cdot \overrightarrow{z} \right) \overrightarrow{y} - \left(\overrightarrow{x} \cdot \overrightarrow{y} \right) \overrightarrow{z} \right]$ $= \lambda \left[\left(\sqrt{2}.\sqrt{2}\cos\frac{\pi}{3} \right) \overrightarrow{y} - \left(\sqrt{2}.\sqrt{2}\cos\frac{\pi}{3} \right) \overrightarrow{z} \right]$ $=\lambda \left(\begin{array}{c} \rightarrow \\ y-z \end{array} \right)$

Since \vec{b} is per pendicular to both y and $\vec{z} \times \vec{x}$.

$$\vec{b} = \mu \left[\vec{y} \times \left(\vec{z} \times \vec{x} \right) \right] = \mu \left[\left(\vec{y} \cdot \vec{x} \right) \vec{z} - \left(\vec{y} \cdot \vec{z} \right) \vec{x} \right]$$

$$= \mu \left[\left(\sqrt{2} \cdot \sqrt{2} \cdot \cos \frac{\pi}{3} \right) \vec{z} - \left(\sqrt{2} \cdot \sqrt{2} \cdot \cos \frac{\pi}{3} \right) \vec{x} \right]$$

$$= \mu \left(\vec{z} - \vec{x} \right)$$

Now,
$$\overrightarrow{b} \cdot \overrightarrow{z} = \mu \begin{bmatrix} \overrightarrow{z} \cdot \overrightarrow{z} - \overrightarrow{x} \cdot \overrightarrow{z} \end{bmatrix} = \mu (2 - 1) = \mu$$

$$\therefore \overrightarrow{b} = \begin{pmatrix} \overrightarrow{b} \cdot \overrightarrow{z} \end{pmatrix} \begin{pmatrix} \overrightarrow{z} - \overrightarrow{x} \\ \overrightarrow{z} - \overrightarrow{x} \end{pmatrix}$$

Also
$$\overrightarrow{a} \cdot \overrightarrow{y} = \lambda \begin{pmatrix} \overrightarrow{y} \cdot \overrightarrow{y} - \overrightarrow{z} \cdot \overrightarrow{y} \\ y \cdot y - z \cdot y \end{pmatrix} = \lambda (2 - 1) = \lambda$$

$$\therefore \overrightarrow{a} = \begin{pmatrix} \overrightarrow{a} \cdot \overrightarrow{y} \\ \overrightarrow{y} - z \end{pmatrix}$$

$$\overrightarrow{a} \cdot \overrightarrow{b} = \lambda \mu \left(\overrightarrow{y} \cdot \overrightarrow{z} - \overrightarrow{y} \cdot \overrightarrow{x} - \overrightarrow{z} \cdot \overrightarrow{z} + \overrightarrow{z} \cdot \overrightarrow{x} \right)$$

$$= \lambda \mu (1 - 1 - 2 + 1) = -\lambda \mu = -\begin{pmatrix} \rightarrow & \rightarrow \\ a \cdot y \end{pmatrix} \begin{pmatrix} \rightarrow & \rightarrow \\ b \cdot z \end{pmatrix}$$

$$-\left(\overrightarrow{a}, \overrightarrow{y}\right)\left(\overrightarrow{z} - \overrightarrow{y}\right) = \lambda\left(\overrightarrow{z} - \overrightarrow{y}\right) = -\overrightarrow{a}$$
(d) is not correct

50. (a,d) Let
$$\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$$
, $\vec{b} = \hat{i} + 2\hat{j} + \hat{k}$, $\vec{c} = \hat{i} + \hat{j} + \hat{k}$

 \therefore Vector coplanar with \vec{a} and \vec{b} is

$$\Rightarrow \vec{r} = \vec{a} + \lambda \vec{b}$$

$$\Rightarrow \vec{r} = (1 + \lambda) \hat{i} + (1 + 2\lambda) \hat{j} + (2 + \lambda) \hat{k}$$

$$\vec{r} \perp \vec{c} \Rightarrow \vec{r}.\vec{c} = 0$$

$$\Rightarrow 1 + \lambda + 1 + 2\lambda + 2 + \lambda = 0 \Rightarrow \lambda + \mu = 0 \Rightarrow \lambda = -\mu$$
$$\Rightarrow 4\lambda + 4 = 0$$

$$\Rightarrow 4\lambda + 4 = 0$$

$$\Rightarrow \lambda - 1$$

Any scalar multiple of \vec{r} is also soluiton.

: a and d are the correct options.

51. (a, c) Let
$$\theta$$
 be the angle between a and \vec{b}

$$\vec{v} = \vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n} = \sin \theta \hat{n}$$

$$\therefore \frac{1}{y} \left\{ (x^2 - 1) \frac{d^2 y}{dx} + x \frac{dy}{dx} \right\}$$

$$= \frac{1}{4x^3 - 3x} \left\{ (x^2 - 1) 24x + x (12x^2 - 3) \right\}$$

$$= \frac{1}{4x^3 - 3x} \left\{ 36x^3 - 27x \right\} = \frac{9 \left\{ 4x^3 - 3x \right\}}{4x^3 - 3x} = 9$$

 $Q \rightarrow 3$: $a_1, a_2, \dots a_n$ are position vectors of vertices $A_1, A_2, A_3, \dots A_n$ of a regular polygon of n sides with its centre at origin.

$$\therefore \qquad \begin{vmatrix} \overrightarrow{a_1} | = \begin{vmatrix} \overrightarrow{a_2} | = \dots = \begin{vmatrix} \overrightarrow{a_n} | = \lambda \end{vmatrix}$$

Now,
$$\overrightarrow{a_k} \times \overrightarrow{a_{k+1}} = \lambda^2 \sin \frac{2\pi}{n} \hat{n}$$

and
$$\overrightarrow{a_k} \cdot \overrightarrow{a_{k+1}} = \lambda^2 \cos \frac{2\pi}{n}$$

$$\left| \sum_{k=1}^{n-1} \left(\vec{a}_k \times \vec{a}_{k+1} \right) \right| = \left| \sum_{k=1}^{n-1} \left(\vec{a}_k \cdot \vec{a}_{k+1} \right) \right|$$

$$\Rightarrow (n-1)\lambda^2 \sin \frac{2\pi}{n} = (n-1)\lambda^2 \cos \frac{2\pi}{n}$$

$$\Rightarrow \tan \frac{2\pi}{n} = 1 \Rightarrow \frac{2\pi}{n} = \frac{\pi}{4} \Rightarrow n = 8$$

R
$$\rightarrow$$
2: Normal from $P(h, 1)$ on $\frac{x^2}{6} + \frac{y^2}{3} = 1$ is

$$\frac{x-h}{h/6} = \frac{y-1}{1/3}$$

$$\Rightarrow 2(x-h) = h(y-1) \Rightarrow 2x - hy - h = 0$$

Slope of Normal = $\frac{2}{h}$

It is perpendicular to x + y = 8

$$\therefore \frac{2}{h} \times -1 = -1 \Rightarrow h = 2$$

S
$$\rightarrow$$
 1: $\tan^{-1} \left(\frac{1}{2x+1} \right) + \tan^{-1} \left(\frac{1}{4x+1} \right) = \tan^{-1} \left(\frac{2}{x^2} \right)$

$$\Rightarrow \tan^{-1} \left(\frac{\frac{1}{2x+1} + \frac{1}{4x+1}}{1 - \frac{1}{2x+1} \cdot \frac{1}{4x+1}} \right) = \tan^{-1} \left(\frac{2}{x^2} \right)$$

$$\Rightarrow \tan^{-1}\left(\frac{6x+2}{8x^2+6x}\right) = \tan^{-1}\left(\frac{2}{x^2}\right)$$

$$\Rightarrow \frac{3x+1}{4x^2+3x} = \frac{2}{x^2}$$

$$\Rightarrow 3x^2 - 7x - 6 = 0 \Rightarrow x = 3 \text{ or } -\frac{2}{3}$$

Since x > 0

:. Only one +ve solution is there Hence (a) is the correct option.

- 57. (c) (P) Given that $|\vec{a}| \vec{b} |\vec{c}| = 2$ $\therefore \left[2(\vec{a} \times \vec{b}) \ 3(\vec{b} \times \vec{c}) \ \vec{c} \times \vec{a} \right]$ $= 6 \begin{bmatrix} \vec{a} \times \vec{b} & \vec{b} \times \vec{c} & \vec{c} \times \vec{a} \end{bmatrix}$
 - $= 6 \left[\vec{a} \ \vec{b} \ \vec{c} \right]^2 = 6 \times 4 = 24 \ \therefore \ (P) \rightarrow (3)$ (Q) Given that $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = 5$ $\therefore \left[3(\vec{a} + \vec{b}) \ \vec{b} + \vec{c} \ 2(\vec{c} + \vec{a}) \right]$ $= 6 \begin{bmatrix} \vec{a} + \vec{b} & \vec{b} + \vec{c} & \vec{c} + \vec{a} \end{bmatrix}$

$$= 6 \times 2 \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = 6 \times 2 \times 5 = 60$$

$$\therefore \quad (O) \rightarrow (4)$$

- (R) Given that $\frac{1}{2} |\vec{a} \times \vec{b}| = 20 \implies |\vec{a} \times \vec{b}| = 40$ $\therefore \frac{1}{2} \left| \left(2\vec{a} + 3\vec{b} \right) \times \left(\vec{a} - \vec{b} \right) \right| = \frac{1}{2} \left| -2\vec{a} \times \vec{b} + 3\vec{b} \times \vec{a} \right|$ $=\frac{1}{2} \times 5 |\vec{a} \times \vec{b}| = \frac{5}{2} \times 40 = 100$ $(R) \rightarrow (1)$
- (S) Given that $|\vec{a} \times \vec{b}| = 30$ $|(\vec{a} + \vec{b}) \times \vec{a}| = |(\vec{b} \times \vec{a})| = 30$
- $A \rightarrow q,s; B \rightarrow p,r,s,t; C \rightarrow t; D \rightarrow r$
 - (A) The given equation is

$$2\sin^2\theta + \sin^2 2\theta = 2$$

$$\Rightarrow 2\sin^2\theta + 4\sin^2\theta\cos^2\theta - 2 = 0$$

$$\Rightarrow$$
 $\sin^2 \theta + 2\sin^2 \theta (1-\sin^2 \theta) - 1 = 0$

$$\Rightarrow 2\sin^4\theta - 3\sin^2\theta + 1 = 0$$

$$\Rightarrow$$
 $2\sin^4\theta - 2\sin^2\theta - \sin^2\theta + 1 = 0$

$$\Rightarrow 2\sin^2\theta(\sin^2\theta - 1) - 1(\sin^2\theta - 1) = 0$$

$$\Rightarrow$$
 $(\sin^2 \theta - 1)(2\sin^2 \theta - 1) = 0$

$$\Rightarrow \sin^2 \theta = 1 \text{ or } \sin^2 \theta = \frac{1}{2}$$

$$\Rightarrow$$
 Sin $\theta = \pm 1$ or sin $\theta = \pm \frac{1}{\sqrt{2}}$

$$\Rightarrow \quad \theta = n\pi \pm \frac{\pi}{2} \text{ or } n\pi \pm \frac{\pi}{4} \Rightarrow \theta = \frac{\pi}{2} \text{ or } \frac{\pi}{4}$$
(B) We know that [x] is discontinuous at all integral values,

therefore
$$\left[\frac{6x}{\pi}\right]$$
 is discontinuous at $x = \frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{2}$ and

$$\pi$$
. Also $\cos\left[\frac{3x}{\pi}\right] \neq 0$ for any of these values of x .

$$\therefore \left[\frac{6x}{\pi} \right] \cos \left[\frac{3x}{\pi} \right] \text{ is discontinuous at } x = \frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{2} \text{ and } \pi.$$

- (C) Let $\vec{a} = \hat{i} + \hat{j}$, $\vec{b} = \hat{i} + 2\hat{j}$ and $\vec{c} = \hat{i} + \hat{j} + \pi \hat{k}$
- \therefore The volume parallelopiped = $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}$

$$= \begin{vmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & \pi \end{vmatrix} = 7$$

(D)
$$\vec{a} + \vec{b} = -\sqrt{3} \vec{c} \Rightarrow |\vec{a} + \vec{b}|^2 = 3 |\vec{c}|^2$$

 $\Rightarrow (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = 3$
 $\Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b} = 3 \Rightarrow 1 + 1 + 2\cos\theta = 3$

(where θ is the angle between \vec{a} and \vec{b})

$$\Rightarrow \cos \theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{3}$$

59. (a) \$\overline{OX}\$, \$\overline{OY}\$, \$\overline{OZ}\$ are unit vectors in the directions of sides
\$\overline{QR}\$, \$\overline{RP}\$ and \$\overline{PO}\$ respectively,

$$=\sin\left(P+Q\right)$$

60. (b)
$$\cos (P+Q) + \cos (Q+R) + \cos (R+P)$$

= $\cos (180-R) + \cos (180-P) + \cos (180-Q)$
= $-[\cos P + \cos Q + \cos R]$

To minimize the expression we need to maximize $\cos P + \cos Q + \cos R$.

We know that $\cos P + \cos Q + \cos R$ will be maximum when $\cos P = \cos Q = \cos R$

$$\Rightarrow P = Q = R = \frac{\pi}{3}$$

$$\therefore \text{ Minimum value} = -3 \cos \frac{\pi}{3} = \frac{-3}{2}$$

61. (c) $\overrightarrow{PQ} \times (\overrightarrow{RS} + \overrightarrow{ST}) = \overrightarrow{PQ} \times \overrightarrow{RT}$ (using triangle law) $= |\overrightarrow{PQ}| \times |\overrightarrow{RT}| \sin 150 \hat{n} \neq 0$ Statement-1 is true.
Also, $\overrightarrow{PQ} \times \overrightarrow{RS} = |\overrightarrow{PQ}| \times |\overrightarrow{RS}| \sin 120^{\circ} \times \hat{n}_{1} \neq 0$ And $\overrightarrow{PQ} \times \overrightarrow{ST} = |\overrightarrow{PQ}| \times |\overrightarrow{ST}| \sin 180^{\circ} \times \hat{n}_{2} = 0$ $\therefore \text{ Statement-2 is false.}$

62. Given that

$$\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$$
 ...(i)
 $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$...(ii)

Subtracting eq^n (ii) from (i) we get

$$\vec{a} \times (\vec{c} - \vec{b}) = (\vec{b} - \vec{c}) \times \vec{d} \implies \vec{a} \times (\vec{c} - \vec{b}) = \vec{d} \times (\vec{c} - \vec{b})$$

$$\Rightarrow \vec{a} \times (\vec{c} - \vec{b}) - \vec{d} \times (\vec{c} - \vec{b}) = \vec{0}$$

$$\Rightarrow (\vec{a} - \vec{d}) \times (\vec{c} - \vec{b}) = \vec{0} \Rightarrow (\vec{a} - \vec{d}) || (\vec{c} - \vec{b})$$

$$[\because \vec{a} - \vec{d} \neq 0, \vec{c} - \vec{b} \neq 0 \text{ as } \vec{a} \neq \vec{b} \neq \vec{c} \neq \vec{d}]$$

- \Rightarrow Angle between $\vec{a} \vec{d}$ and $\vec{c} \vec{b}$ is either 0 or 180°.
- \Rightarrow $(\vec{a} \vec{d}) \cdot (\vec{c} \vec{b}) = |\vec{a} \vec{d}| |\vec{c} \vec{b}| \cos 0 [\text{or } \cos 180^{\circ}] \neq 0$ as \vec{a} , \vec{b} , \vec{c} , \vec{d} all are different. Hence Proved.
- 63. \overrightarrow{u} , \overrightarrow{v} and $\overrightarrow{\omega}$ represent in figure as \overrightarrow{OA} , \overrightarrow{OB} and \overrightarrow{OC} resp. Let P be a pt. on angle bisector of $\angle AOB$ such that OAPB is a parallelogram.

- $\therefore \angle POA = \angle BOP = \alpha/2$
- $\therefore \angle APO = \angle BOP = \alpha/2$ (alt. int. $\angle's$)
- \therefore In $\triangle OAP$, OA = AP
- $\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP} = \overrightarrow{u} + \overrightarrow{v}$
- : A unit vector in the direction of

$$\overrightarrow{OP} = \frac{\overrightarrow{u} + \overrightarrow{v}}{|\overrightarrow{u} + \overrightarrow{v}|}$$
 i.e. $\overrightarrow{x} = \frac{\overrightarrow{u} + \overrightarrow{v}}{|\overrightarrow{u} + \overrightarrow{v}|}$

But $|\vec{u} + \vec{v}|^2 = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) = 1 + 1 + 2\vec{u} \cdot \vec{v}$

$$[\because |\vec{u}| = |\vec{v}| = 1]$$

- $=2+2\cos\alpha=4\cos^2\alpha/2$
- $\vec{u} + \vec{v} = 2\cos\alpha/2 \implies \vec{x} = \frac{1}{2}(\sec\alpha/2)(\vec{u} + \vec{v})$

Similarly,
$$\vec{y} = \frac{1}{2}\sec{\frac{\beta}{2}}(\vec{v} + \vec{\omega})$$
 and $\vec{z} = \frac{1}{2}\sec{\frac{\gamma}{2}}(\vec{\omega} + \vec{u})$

Now
$$[\vec{x} \times \vec{y} \ \vec{y} \times \vec{z} \ \vec{z} \times \vec{x}]$$

$$= (\vec{x} \times \vec{y}) \cdot [(\vec{y} \times \vec{z}) \times (\vec{z} \times \vec{x})]$$

$$= (\vec{x} \times \vec{y}) \cdot [\{(\vec{y} \times \vec{z}) \cdot \vec{x}\} \vec{z} - \{(\vec{y} \times \vec{z}) \cdot \vec{z}\} \vec{x}]$$

$$= (\vec{x} \times \vec{y}) \cdot [[\vec{x} \cdot \vec{y} \cdot \vec{z}] \vec{z} - 0] \qquad [\because [\vec{y} \cdot \vec{z} \cdot \vec{z}] = 0]$$

$$= [\vec{x} \cdot \vec{y} \cdot \vec{z}] [\vec{x} \cdot \vec{y} \cdot \vec{z}] = [\vec{x} \cdot \vec{y} \cdot \vec{z}]^2 \qquad ...(i)$$
Also, $[\vec{x} \cdot \vec{y} \cdot \vec{z}] = [\vec{x} \cdot \vec{y} \cdot \vec{z}]^2 \qquad ...(i)$

Also
$$[\vec{x}\ \vec{y}\ \vec{z}] = \left[\frac{1}{2}\left(\sec\frac{\alpha}{2}\right)(\vec{u}+\vec{v})\ \frac{1}{2}\sec\beta/2(\vec{v}+\vec{\omega})\right]$$

$$\frac{1}{2}\sec\gamma/2(\vec{\omega}+\vec{u})$$

$$= \frac{1}{8}\sec\alpha/2\sec\beta/2\sec\gamma/2[\vec{u}+\vec{v}\ \vec{v}+\vec{\omega}\ \vec{\omega}+\vec{u}]$$

$$[(\vec{u}+\vec{v}).\{(\vec{v}+\vec{\omega})\times(\vec{\omega}+\vec{u})\}]$$

$$[(\vec{u}+\vec{v}).(\vec{v}\times\vec{\omega}+\vec{v}\times\vec{u}+\vec{\omega}\times\vec{u})]$$

$$[\vec{u}.(\vec{v}\times\vec{\omega})+\vec{v}.(\vec{\omega}\times\vec{u})]$$

$$(\because [\vec{a}\vec{b}\vec{c}] = 0$$
 when ever any two vectors are same)
= $2[\vec{u}\vec{v}\omega]$

$$[\vec{x}\ \vec{y}\ \vec{z}] = \frac{1}{4} (\sec\alpha/2\sec\beta/2\sec\gamma/2) [\vec{u}\vec{v}\omega] \quad \text{(from (ii))}$$

$$\therefore [\vec{x}\vec{v}\vec{z}]^2 = \frac{1}{4} [\vec{u}\vec{v}\omega]^2 \sec^2\alpha/2 \sec^2\beta/2 \sec^2\gamma/2 \dots \text{(iii)}$$

$$\therefore [\overrightarrow{xyz}]^2 = \frac{1}{16} [\overrightarrow{uv\omega}]^2 \sec^2 \alpha/2 \sec^2 \beta/2 \sec^2 \gamma/2] \dots (iii)$$

From (i) and (iii),

$$[\vec{x} \times \vec{y} \ \vec{y} \times \vec{z} \ \vec{z} \times \vec{x}] = \frac{1}{16} [\vec{u}\vec{v}\vec{\omega}]^2 \sec^2 \frac{\alpha}{2} . \sec^2 \frac{\beta}{2} \sec^2 \frac{\gamma}{2}$$

64. We know that,
$$V = [\vec{a} \ \vec{b} \ \vec{c}] = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

$$= a_1 (b_2 c_3 - b_3 c_2) - a_2 (b_1 c_3 - c_1 b_3) + a_3 (b_1 c_2 - c_1 b_2)$$

$$= (a_1b_2c_3 + a_2b_3c_1 + a_3b_1c_2) - (a_1b_3c_2 + a_2b_1c_3 + a_3b_2c_1)$$

Now we know that $AM \ge GM$

$$\therefore \frac{(a_1+b_1+c_1)+(a_2+b_2+c_2)+(a_3+b_3+c_3)}{3}$$

$$\geq [(a_1 + b_1 + c_1)(a_2 + b_2 + c_2)(a_3 + b_3 + c_3)]^{1/3}$$

$$\Rightarrow \frac{3L}{3} \geq [(a_1 + b_1 + c_1)(a_2 + b_2 + c_2)(a_3 + b_3 + c_3)]^{1/3}$$

$$\Rightarrow L^3 \ge (a_1 + b_1 + c_1)(a_2 + b_2 + c_2)(a_3 + b_3 + c_3)$$

$$\Rightarrow L^3 \ge a_1b_2c_3 + a_2b_3c_1 + a_3b_1c_2 + 24$$
 more such terms

$$L^3 \ge a_1b_2c_3 + a_2b_3c_1 + a_3b_1c_2$$

$$[:: a_r, b_r, c_r \ge 0 \text{ for } r = 1, 2, 3]$$

$$L^3 \ge (a_1b_2c_3 + a_2b_3c_1 + a_3b_1c_2) - (a_1b_3c_2 + a_2b_1c_3 + a_3b_2c_1)$$

[By properties of inquality]
 $L^3 \ge V$ (from (i)) Hence Proved.

65. Since,
$$\vec{w} + (\vec{w} \times \vec{u}) = \vec{v}$$

$$\Rightarrow \vec{w} = \vec{v} - (\vec{w} \times \vec{u})$$

$$[\vec{u} \ \vec{v} \ \vec{w}] = (\vec{u} \times \vec{v}).(\vec{v} - \vec{w} \times \vec{u}) = (\vec{u} \times \vec{v}).(\vec{u} \times \vec{w})$$

$$= \begin{vmatrix} \vec{u}.\vec{u} & \vec{u}.\vec{w} \\ \vec{v}.\vec{u} & \vec{v}.\vec{w} \end{vmatrix}$$

Now,
$$\vec{u} \cdot \vec{u} = 1$$
. Let θ is angle between \vec{u} and \vec{v} .

$$\therefore \vec{u} \cdot \vec{w} = \vec{u} \cdot (\vec{v} - \vec{w} \times \vec{u}) = \vec{u} \cdot \vec{v} - [\vec{u} \ \vec{w} \vec{u}] = \vec{u} \cdot \vec{v} = \cos \theta$$

$$\vec{v} \cdot \vec{w} = \vec{v} \cdot (\vec{v} - \vec{w} \times \vec{u}) = 1 - [\vec{v} \ \vec{w} \vec{u}] = 1 - [\vec{u} \ \vec{v} \ \vec{w}]$$

$$\vec{u} \vec{v} \vec{w} = \begin{vmatrix} 1 & \cos \theta \\ \cos \theta & 1 - (\vec{u} \vec{v} \vec{w}) \end{vmatrix},$$

$$= 1 - [\vec{u} \vec{v} \vec{w}] - \cos^2 \theta$$

$$\vec{u} \vec{v} \vec{w} = \frac{1}{2} \sin^2 \theta \le \frac{1}{2}$$

Equality holds when $\sin^2 \theta = 1$ i.e., $\theta = \pi/2 :: \vec{u} \perp \vec{v}$.

66. (a) Since,
$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$$
 and $\vec{u} \times \vec{v} = |\vec{u}| |\vec{v}| \sin \theta \hat{n}$
Let θ be the angle between \vec{u} and \vec{v} and \hat{n} is a unit vector perpendicular to both $\vec{u} \cdot \vec{v}$.

L.H.S =
$$|\vec{u}.\vec{v}|^2 + |\vec{u} \times \vec{v}|^2$$

= $|\vec{u}|^2 |\vec{v}|^2 \cos^2 \theta + |\vec{u}|^2 |\vec{v}|^2 \sin^2 \theta |\vec{n}|^2$
= $|\vec{u}|^2 |v|^2 (\cos^2 \theta + \sin^2 \theta)$ (: $|\hat{n}| = 1$)
= $|\vec{u}|^2 |v|^2 = R.H.S$

(b)
$$|\vec{u} + \vec{v} + (\vec{u} \times \vec{v})|^2 = |\vec{u} + \vec{v}|^2 + |\vec{u} \times \vec{v}|^2 + 2(\vec{u} + \vec{v}).(\vec{u} \times \vec{v})$$

$$|\vec{u}|^{2} + |\vec{v}|^{2} + 2\vec{u}.\vec{v} + |\vec{u} \times \vec{v}|^{2} + 0$$

$$\therefore \text{R.H.S} = |\vec{u} + \vec{v} + \vec{u} \times \vec{v}|^{2} + |1 - \vec{u}.\vec{v}|^{2}$$

$$= |\vec{u}|^{2} + |\vec{v}|^{2} + 2\vec{u}.\vec{v} + |\vec{u} \times \vec{v}|^{2}$$

$$+1-2\vec{u}.\vec{v}+|\vec{u}-\vec{v}|^2$$

$$= |\vec{u}|^2 + |\vec{v}|^2 + 1 + |\vec{u}|^2 |\vec{v}|^2$$
$$= (1 + |\vec{u}|^2)(1 + |\vec{v}|^2) = L.H.S.$$

67.
$$(\vec{A} + \vec{B}) \times (\vec{A} + \vec{C})$$

$$= \vec{0} + \vec{B} \times \vec{A} + \vec{A} \times \vec{C} + \vec{B} \times \vec{C} \qquad [\because \vec{A} \times \vec{A} = 0]$$

$$= \vec{B} \times \vec{A} + \vec{A} \times \vec{C} + \vec{B} \times \vec{C}$$
Now, $[(\vec{A} + \vec{B}) \times (\vec{A} + \vec{C})] \times (\vec{B} \times \vec{C})$

$$\begin{split} &= [\overrightarrow{B} \times \overrightarrow{A} + \overrightarrow{A} \times \overrightarrow{C} + \overrightarrow{B} \times \overrightarrow{C}] \times (\overrightarrow{B} \times \overrightarrow{C}) \\ &= (\overrightarrow{B} \times \overrightarrow{A}) \times (\overrightarrow{B} \times \overrightarrow{C}) + (\overrightarrow{A} \times \overrightarrow{C}) \times (\overrightarrow{B} \times \overrightarrow{C}) \\ &= \left\{ (\overrightarrow{B} \times \overrightarrow{A}) . \overrightarrow{C} \right\} \overrightarrow{B} - \left\{ (\overrightarrow{B} \times \overrightarrow{A}) . \overrightarrow{B} \right\} \overrightarrow{C} \\ &\qquad \qquad + \left\{ (\overrightarrow{A} \times \overrightarrow{C}) . \overrightarrow{C} \right\} \overrightarrow{B} - \left\{ (\overrightarrow{A} \times \overrightarrow{C}) . \overrightarrow{B} \right\} \overrightarrow{C} \\ &\qquad \qquad [\because (\overrightarrow{a} \times \overrightarrow{b}) \times \overrightarrow{c} = (\overrightarrow{a} . \overrightarrow{c}) \overrightarrow{b} - (\overrightarrow{b} . \overrightarrow{c}) \overrightarrow{a}] \end{split}$$

$$= [\vec{B} \, \vec{A} \, \vec{C}] \vec{B} - [\vec{A} \, \vec{C} \, \vec{B}] C$$

 $[\because [\vec{A}\vec{B}\vec{C}] = 0 \text{ if any two of } [\vec{A}, \vec{B}, \vec{C}] \text{ are equal.}]$ $= [\vec{A}\vec{C}\vec{B}] \{\vec{B} - \vec{C}\}$

LHS =
$$[\overrightarrow{A}\overrightarrow{C}\overrightarrow{B}]\{(\overrightarrow{B}-\overrightarrow{C}).(\overrightarrow{B}+\overrightarrow{C})\}$$

= $[\overrightarrow{A}\overrightarrow{C}\overrightarrow{B}]\{|\overrightarrow{B}|^2 - |\overrightarrow{C}|^2\} = 0$ [:: $|B| = |C|$]
Given that $AD = 4$
Let $DE = h$

Volume of tetrahedron $=\frac{2\sqrt{2}}{3}$

$$\Rightarrow \frac{1}{3}Ar(\Delta ABC)h = \frac{2\sqrt{2}}{3}$$

$$\therefore \quad \frac{1}{2} \mid \overrightarrow{BA} \times \overrightarrow{BC} \mid h = 2\sqrt{2}$$

$$\frac{1}{2} | (\hat{j} + \hat{k}) \times 2i | h = 2\sqrt{2} \text{ or } | \hat{j} - \hat{k} | h = 2\sqrt{2}$$

or
$$\sqrt{2}h = 2\sqrt{2}$$
 $\therefore h = 2$

Let point E divides median AF in the ratio $\lambda:1$

$$\therefore \quad \overrightarrow{OE} = \frac{\lambda . 2\hat{i} + (\hat{i} + \hat{j} + \hat{k})}{\lambda + 1} \qquad \dots \text{(ii)}$$

$$\therefore \quad \overrightarrow{AE} = \text{P.V. of } E - \text{P.V. of } A = \frac{\lambda}{\lambda + 1} (\hat{i} - \hat{j} - \hat{k})$$

$$\therefore |\overline{AE}|^2 = \overline{AE}^2 = \left(\frac{\lambda}{\lambda + 1}\right)^2.3 \qquad \dots \text{(iii)}$$

Now,
$$h^2 + AE^2 = AD^2$$

$$\Rightarrow 4 + \left(\frac{\lambda}{\lambda + 1}\right)^2 . 3 = 16 \Rightarrow 3\left(\frac{\lambda}{\lambda + 1}\right)^2 = 12$$

$$\Rightarrow \left(\frac{\lambda}{\lambda+1}\right) = \pm 2 \Rightarrow \lambda = \pm (2\lambda+2)$$

$$\lambda = -2 \text{ or } -2/3$$

Putting the value of λ in (ii) we get the possible positions of E as (-1, 3, 3) or (3, -1, -1)

69. Given that
$$\vec{b}, \vec{c}, \vec{d}$$
 are not coplanar $\therefore [\vec{b}, \vec{c}, \vec{d}] \neq 0$
Here, $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = -(\vec{c} \times \vec{d}) \times (\vec{a} \times \vec{b})$
 $= -(\vec{c} \times \vec{d} \cdot \vec{b}) \vec{a} + (\vec{c} \times \vec{d} \cdot \vec{a}) \vec{b}$
 $= [\vec{a} \vec{c} \vec{d}] \vec{b} - [\vec{b} \vec{c} \vec{d}] \vec{a}$...(i)

$$(\vec{a} \times \vec{c}) \times (\vec{d} \times \vec{b}) = -(\vec{d} \times \vec{b}) \times (\vec{a} \times \vec{c})$$

$$= -(\vec{d} \times \vec{b}.\vec{c})\vec{a} + (\vec{d} \times \vec{b}.\vec{a})\vec{c}$$

$$= [\vec{a} \vec{d} \vec{b}]\vec{c} - [\vec{c} \vec{d} \vec{b}]\vec{a} \qquad \dots (ii)$$

$$(\vec{a} \times \vec{d}) \times (\vec{b} \times \vec{c}) = ((\vec{a} \times \vec{d})\vec{c})\vec{b} - (\vec{a} \times \vec{d}.\vec{b})\vec{c}$$
$$= -[\vec{a}\vec{c}.\vec{d}]\vec{b} - [\vec{a}\vec{d}.\vec{b}]\vec{c} \qquad \dots$$

Adding (i), (ii) and (iii), we get. given vector $= -2[\vec{b} \vec{c} \vec{d}]\vec{a} = k\vec{a}$

 \Rightarrow given vector is parallel to \vec{a} .

70. Let
$$\vec{R} = x\hat{i} + y\hat{j} + z\hat{k}$$

Then
$$\vec{R} \times \vec{B} = \vec{C} \times \vec{B}$$

$$\Rightarrow \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ 1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & -3 & 7 \\ 1 & 1 & 1 \end{vmatrix}$$

$$\Rightarrow (y-z)\hat{i} - (x-z)\hat{j} + (x-y)\hat{k} = -10\hat{i} + 3\hat{j} + 7\hat{k}$$

$$\Rightarrow y-z=-10 \qquad \dots (i)$$

$$z - x = +3$$
 ... (ii)

$$x-y=7$$

Also $\vec{R} \cdot \vec{A} = 0$

$$\Rightarrow 2x+z=0$$
 ... (iv)

From (ii) and (iv) we get x = -1, from (i) and (iii) we get. $\Rightarrow y = -8$ and z = 2

$$\vec{R} = -\hat{i} - 8\hat{j} + 2\hat{k}$$

71. Given that $\vec{a}, \vec{b}, \vec{c}$ are three coplanar vectors.

There exists scalars x, y, z, not all zero, such that

$$x\vec{a} + y\vec{b} + z\vec{c} = \vec{0} \qquad \dots (i)$$

Taking dot product of eqn. (i) with \vec{a} and \vec{b} respectively, we get

$$\vec{xa} \cdot \vec{a} + \vec{yab} + \vec{za} \cdot \vec{c} = \vec{0}$$
 ... (ii)

$$x\vec{b}.\vec{a} + y\vec{b}.\vec{b} + z\vec{b}.\vec{c} = \vec{0}$$
 ... (iii)

Since equations (i), (ii), (iii) form a homogeneous system of equations, where x, y, z are not all zero. Therefore system must have non trivial solution.

$$\begin{vmatrix} \vec{a} & \vec{b} & \vec{c} \\ \vec{a}.\vec{a} & \vec{a}.\vec{b} & \vec{a}.\vec{c} \\ \vec{b}.\vec{a} & \vec{b}.\vec{b} & \vec{b}.\vec{c} \end{vmatrix} = 0$$
 Hence Proved.

72. Let the position vectors of points A, B, C, D with respect to origin O be a, b, c, and d respectively.

Then,
$$\overrightarrow{AB} = \overrightarrow{b} - \overrightarrow{a}$$
, $\overrightarrow{AD} = \overrightarrow{d} - \overrightarrow{a}$, $\overrightarrow{BD} = \overrightarrow{d} - \overrightarrow{b}$, $\overrightarrow{BD} = \overrightarrow{d} - \overrightarrow{b}$, $\overrightarrow{CD} = \overrightarrow{d} - \overrightarrow{c}$, $\overrightarrow{CA} = \overrightarrow{a} - \overrightarrow{c}$

Now,
$$|\overrightarrow{AB} \times \overrightarrow{CD} + \overrightarrow{BC} \times \overrightarrow{AD} + \overrightarrow{CA} \times \overrightarrow{BD}|$$

$$= |(\overrightarrow{b} - \overrightarrow{a}) \times (\overrightarrow{d} - \overrightarrow{c}) + (\overrightarrow{c} - \overrightarrow{b}) \times (\overrightarrow{d} - \overrightarrow{a}) + (\overrightarrow{a} - \overrightarrow{c}) \times (\overrightarrow{d} - \overrightarrow{b})|$$

$$= |\overrightarrow{b} \times \overrightarrow{d} - \overrightarrow{a} \times \overrightarrow{d} - \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{a} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{d} - \overrightarrow{c} \times \overrightarrow{a}$$

$$-\overrightarrow{b} \times \overrightarrow{d} + \overrightarrow{b} \times \overrightarrow{a} + \overrightarrow{a} \times \overrightarrow{d} - \overrightarrow{a} \times \overrightarrow{b} - \overrightarrow{c} \times \overrightarrow{d} + \overrightarrow{c} \times \overrightarrow{b}|$$

$$= |-\overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{a} \times \overrightarrow{c} - \overrightarrow{c} \times \overrightarrow{a} + \overrightarrow{b} \times \overrightarrow{a} - \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{c} \times \overrightarrow{b}|$$

$$= 2|\overrightarrow{b} \times \overrightarrow{a} + \overrightarrow{c} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c}|$$
Also Area of \triangle ABC is

$$= \frac{1}{2} |\overrightarrow{BC} \times \overrightarrow{BA}| = \frac{1}{2} |(\overrightarrow{c} - \overrightarrow{b}) \times (\overrightarrow{a} - \overrightarrow{b})|$$
$$= \frac{1}{2} |(\overrightarrow{c} \times \overrightarrow{a} - \overrightarrow{c} \times \overrightarrow{b} - \overrightarrow{b} \times \overrightarrow{a} + \overrightarrow{b} \times \overrightarrow{b}|$$

$$= \frac{1}{2} |-\vec{b} \times \vec{a} - \vec{c} \times \vec{b} - \vec{a} \times \vec{c}| = \frac{1}{2} |\vec{b} \times \vec{a} + \vec{c} \times \vec{b} + \vec{a} \times \vec{c}|$$

$$\Rightarrow 2Ar(\triangle ABC) = |\vec{b} \times \vec{a} + \vec{c} \times \vec{b} + \vec{a} \times \vec{c}| \dots \text{(ii)}$$

From (i) and (ii), we get

$$|\overrightarrow{AB} \times \overrightarrow{CD} + \overrightarrow{BC} \times \overrightarrow{AD} + \overrightarrow{CA} \times \overrightarrow{BD}|$$

= $2(2Ar(\Delta ABC)) = 4Ar(\Delta ABC)$ Hence Proved.

73. From given position vector $\overrightarrow{AB} = -\hat{i} + 5\hat{j} - 3\hat{k}$,

$$\overrightarrow{AC} = -4\hat{i} + 3\hat{j} + 3\hat{k}$$

$$\overrightarrow{AD} = \hat{i} + 7\hat{j} + (1 + \lambda)\hat{k}$$
 and one states with results.

Given that A, B, C, D lie in a plane then \overline{AB} , \overline{AC} , \overline{AD} are coplanar i.e. $\left[\overline{AB}\,\overline{AC}\,\overline{AD}\right] = 0$

$$\Rightarrow \begin{vmatrix} -1 & 5 & -3 \\ -4 & 3 & 3 \\ 1 & 7 & 1+\lambda \end{vmatrix} = 0$$

$$\Rightarrow -1(3+3\lambda-21)-5(-4-4\lambda-3)-3(-28-3)=0$$

$$\Rightarrow -3\lambda + 18 + 20\lambda + 35 + 93 = 0 \Rightarrow 17\lambda + 146 = 0$$

$$\Rightarrow \lambda = -\frac{146}{17}$$

74.
$$\vec{r} = \lambda x \hat{i} + \lambda y \hat{j} + \lambda z \hat{k}$$

On comparing both sides, we get

$$\Rightarrow x+3y-4z = \lambda x \Rightarrow (1-\lambda)x+3y-4z = 0$$

$$\Rightarrow x-3y+5z = \lambda y \Rightarrow x-(3+\lambda)y+5z = 0$$

$$\Rightarrow$$
 $3x + y + 0z = \lambda z \Rightarrow 3x + y - \lambda z = 0$

Since $x, y, z \neq (0, 0, 0)$ then all the above three equations non zero solution.

$$\begin{vmatrix} 1-\lambda & 3 & -4 \\ 1 & -(3+\lambda) & 5 \\ 3 & 1 & -\lambda \end{vmatrix} = 0$$

$$\Rightarrow (1-\lambda)[3\lambda + \lambda^2 - 5] - 3[-\lambda - 15] - 4[1+9+3\lambda] = 0$$

$$\Rightarrow \lambda^3 + 2\lambda^2 + \lambda = 0 \Rightarrow \lambda(\lambda + 1)^2 = 0 \Rightarrow \lambda = 0, -1.$$

75. Since A₁, A₂, ... A_n are the vertices of a regular plane polygon.

 $\vec{OA}_1, \vec{OA}_2, ..., \vec{OA}_n$ all vectors are of same magnitude, say 'a' and angle between any two consecutive vector is

same that is $\frac{2\pi}{n}$ radians. Let \hat{n} be the normal unit vectors perpendicular to the plane of the polygon.

$$\overrightarrow{OA}_1 \times \overrightarrow{OA}_2 = a^2 \sin \frac{2\pi}{n} \hat{p} \qquad \dots (i)$$

Now,
$$\sum_{i=1}^{n-1} \overrightarrow{OA}_i \times \overrightarrow{OA}_{i+1} = \sum_{i=1}^{n-1} a^2 \sin \frac{2\pi}{n} \hat{p}$$

$$= (n-1)a^2 \sin \frac{2\pi}{n} \hat{p} = -(n-1)[\overrightarrow{OA}_2 \times \overrightarrow{OA}_1]$$
[using eqⁿ. (i)]

$$=(1-n)[\overrightarrow{OA}_2\times\overrightarrow{OA}_1]=R.H.S$$